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Arc discharge for nanomaterials building

Arc method : Atmosphere Helium 500 Torr
* Simple to implement .
« High nanomaterial yield Plasma density (n,) 1014 - 106 cm?3
* Variety of synthesized Temperature (T.) leV
nanostructures lonization degree 10%
V.. 1012
. Ve, 1011 s1

Discharge current 60 A mnp, 1 um
Discharge voltage 20V mnp,_, few um

Ap 100 nm

Fullerenes Carbon nanotubes ,

-

Graphene | 3



Arc run

Run time: 1 min; Voltage 24 V, Current 60 A

Anode

6.5 mm
diameter

gapI

9.5 mm
diameter

Recording with filter at 656 nm, playing at 500 fps



Plasma role in nanostructure synthesis?

Laboratory for Plasma Nanosynthesis g ooy . Plasma role in nanostructure

Princeton Plasma Physics Laboratory -

ABOUT RESEARCH PEOPLE FACILITIES PUBLICATIONS sy nt h e s i s ?
What are plasma properties?

ANNOUNCEMENT

L] L]
Laboratory for Plasma Nanosynthesis (LPN) at Princeton Plasma Physics Laboratory (PPPL) [ H w f d t k m t rl I I
PhD defense of Yao-Wen Yeh combines PPPL expertise in plasma science with the materials science capabilities of Princeton o ee S oc a e a S
University and other institutions. LPN-PPPL is conducting collaborative research on the
44th 1COPS fundamental physics of low temperature plasma synthesis and functionalization of nanomaterials, fo rm ed ?
and soft plasma processing of materials at nanoscale °
59th APS DPP meeting

What growth conditions are
realized in the arc?

PhD defense of James Mitrani
MEDIA

Igor Kaganovich in News

Roberto Car: National
Academy of Sciences

10:45 WE 1.4-3 : Alexander Khrabry
SELF-CONSISTENT NUMERICAL SIMULATION OF CARBON ARC FOR
NANOPARTICLE SYNTHESIS

Roberto Car receives ACS Award

PPPL receives $4.3 million...

OQ00@0O00

Nanotechnology at PPPL

TU Posters-27 : Tianyuan Huang
EXPERIMENTAL STUDY OF TIME DEPENDENCE OF ABLATION RATE IN
ATMOSPHERIC PRESSURE DC CARBON ARC DISCHARGES

Nano meets plasma at PPPL

*more details at http://nano.pppl.gov/



Synthesis arc: Status Quo

* Synthesis requires e Plasma simulationsshow ¢ dcarcis... unstable
flux of feedstock monotonic density and arc attachments to electrodes,
material and temperature distributions  arc channel exhibit complex
temperature in dc arc reactor motions (oscillations)

Two modes of arc operation: Two modes of arc oscillations:
* Low (small) anode ablation T(K) . * Low frequency (<1 kHz)

. . B 7000 ]
* High (enhanced) anode ablation 213 e * High frequency (>1 kHz)
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Carbon 46, 1322 (2008). J. Phys. D: Appl. Phys. 45 (2012). J. .Phys. D: Appl. Phys. 49, 345201 (2016).



Synthesis arc: Status Quo

* Synthesis requires * Numerical calculations of ¢ dcarcis ... unstable
flux of feedstock near-cathode region in arc attachments to electrodes,
material and Argon arc with W arc channel exhibit complex
temperature electrodes at 1 atm motions (oscillations)
1024 0.3-50
Two modes of arc operation: iz Ne. i) }' ™ Two modes of arc oscillations:

ng (m-3

* Low (small) anode ablation 1025 ) Fiosk) o  Low frequency (<1 kHz)
* High (enhanced) anode ablation 2o * High frequency (>1 kHz)
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Brief summary

Plasma arc core
parameters:

Optical emission
spectroscopy

* Plasma density n,
profiles from Stark
broadening of
hydrogen H, line

* Plasma temperature
T, from line intensity
ratio method

Electrical
measurements

* Arc Volt-Ampere
characteristics

C
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Time- and space- resolved
structure of the carbon arc:

Filtered Fast Framing
Imaging

* Line integrated
irradiance of plasma
species

Planar Laser Induced
Fluorescence

* Distribution of heavy
plasma species (carbon
dimers in arc periphery)



Experimental setup. Arc broadband spectrum

Typical arc spectrum
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Intensity, [arb.u.]
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Wavelength, [nm]

C, Swan band - strongest lines

C neutrals & ions — present

H —added (5%) to facilitate spectroscopy

He — very small contributio

n
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Arc structure - Filtered Fast Frame Imaging

Line integrated spectral
images of plasma species
radiation were reconstructed
using Abel inversion method
to obtain distribution of
plasma species emissivity

C1(10.7 eV)

Anode

-—-—-—/

Cl P=mmec
emission emission
Cathode

C2
emission

Carbon dimers form
bubble-like shape

Cathode Cathode B around the arc core

2 mm 2 mm

2

1

* H, radiation 1 f—Ha C
. | — — |
diameter: <4 mm 8 S08}|—c, 2~
S 2 Temperature
E 06 [ _-O 6F 4
. = - 0. —_— <+«—}—— range
* 90% of discharge > 3 2000 3300 K
. w - = | -
current is conducted c 0.4 3 0.4
. £ =
within =3 mm = o2} 002
*Y.W. Yeh, Y. Raitses, and N. Yao, 0 L 0] . L L . .
Carbon 105, 490-495 (2016) -6 -4 -2 0 2 4 6 0 1 2 3 4 5 6 12

Radial coordinate, r [mm] Radial coordinate, r [mm)]



Arc structure - planar Laser Induced Fluorescence

Schematic of planar LIF Spectral image of carbon Planar LIF: spectral image of
Laser sheet dimer (C,) spontaneous carbon dimer (C,) emission at
emission at 470 nm 470 nm (laser at 437 nm)

anode

c, /

emission cathode cathode

10" e Carbon dimer distribution has a bubble-
like shape around the arc core
g >wo® * Presence of carbon dimer near the anode
surface supports multi-species

110 evaporation model of graphite (C, C,, C,?)
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Arc structure in high ablation mode

Arc core

Low ablation mode High ablation mode

_

o ) . N
emission T
Deposit Deposit

Cathode

2 mm

Arc periphery
Low ablation mode High ablation mode

C, (2.6 eV)

> ~<— C,

emission
Deposit

C,

emission "‘"
Deposit

Cathode

2 mm

The layered structure of the arc is preserved in most of operation modes
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Transition Low-to-High (enhanced) ablation mode

Arc exhibits sharp increase of the anode ablation rate
with increase of the discharge current.
Other parameters are kept the same
Arc voltage vs current
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Anode fall voltage measurements

a bec d e f
" IATC | " AIC |
401 | | ignition extinction
o Electrodes movement
> 30 1 closer | | |
N away
&
f o Lo
10- V. +V," V, +V
E 1
0 ) | 7F T t 7777777
1 101 102
Time [s]

Discharge voltage waveform (blue
line) during arc ignition (a-d) and
extinction (e-f).

Electrodes are moving towards each
other during (a-b) and (e-f) and
outwards during (c-d).

Red arrows indicate measurement
points
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Correlation between anode fall and anode ablation

Variation of the anode voltage drop vs Anode ablation rate vs
discharge current discharge current
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Enhanced ablation of the anode material can be induced by

increase of the anode fall voltage (and current density) 18
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Arc core parameters — Temperature

Arc
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Arc core parameters — Stark spectroscopy

Spectral line shape profile

1200

= Experiment
1000 H ,A‘ i
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Kal : 1
g A0 i
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. — 400 / \
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Plasma electron density n,

Experimental spectral line profile should be properly de-
convolved to obtain Stark broadening component

V (2)= Afexp C4In2(X-4) 12
G, 4(A-A| -2 ) +L2
L, a5y aa™

GW _ \/(A;LDoppler )2 n (A/ftlnstr )2

da’

V(4) - Voigt function
G(4) - Gaussian function with FWHM G,
L(4) - Lorentzian function with FWHM L,

AAP®" - Doppler broadening
A" - Van-der-Walls broadening
AA™" - Instrumental broadening

* |low ablation mode:
8:1014-8-10> cm3

* high ablation mode:
5-10%°-3:101% cm3

AﬂStark _ f (ne)

M. A. Gigosos, M. A. Gonzalez, and V. Cardenoso,
Spectrochim Acta B 58, 1489-1504 (2003).



Summary

1 - Evaporation 2 - Nucleation

3 - Growth

* First direct measurements of the arc Arc i Al i Arc peripher —
. center ' core ; periphery !
core plasma density and temperature T~_i —*n(xp Arc core (FFI)
16 b « — — n (sim) | .“‘:"' C, (FFI)
10 : L ——C, (LIF) R

e Arc structure and evolution of the arc
core parameters in low- and high-

Plasma density (cm'3)

C, (LIF raw)

ablation modes were obtained. 10°
* Enhanced ablation of the anode
. e . . 0"
material is induced by increase of the 1 ;

anode fall voltage and current density.

This work is funded by the Department of Energy, Office of Science, Basic
Energy Sciences, Materials Sciences and Engineering Division and Fusion
Energy Sciences.
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