
Sound produced by an oscillating arc in a high-pressure gas
Fedor K. Popov and Mikhail N. Shneider

Citation: Journal of Applied Physics 122, 053303 (2017); doi: 10.1063/1.4985805
View online: http://dx.doi.org/10.1063/1.4985805
View Table of Contents: http://aip.scitation.org/toc/jap/122/5
Published by the American Institute of Physics

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1279441103/x01/AIP-PT/JAP_ArticleDL_060717/jap.jpg/434f71374e315a556e61414141774c75?x
http://aip.scitation.org/author/Popov%2C+Fedor+K
http://aip.scitation.org/author/Shneider%2C+Mikhail+N
/loi/jap
http://dx.doi.org/10.1063/1.4985805
http://aip.scitation.org/toc/jap/122/5
http://aip.scitation.org/publisher/


Sound produced by an oscillating arc in a high-pressure gas

Fedor K. Popov1,2,3 and Mikhail N. Shneider3,a)

1Institute for Theoretical and Experimental Physics, B. Cheremushkinskaya, 25, 117218 Moscow, Russia
2Institutskii per, 9, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
3Princeton University, Princeton, New Jersey 08544, USA

(Received 30 May 2017; accepted 26 July 2017; published online 7 August 2017)

We suggest a simple theory to describe the sound generated by small periodic perturbations of a

cylindrical arc in a dense gas. Theoretical analysis was done within the framework of the non-self-

consistent channel arc model and supplemented with time-dependent gas dynamic equations. It is

shown that an arc with power amplitude oscillations on the order of several percent is a source of

sound whose intensity is comparable with external ultrasound sources used in experiments to

increase the yield of nanoparticles in the high pressure arc systems for nanoparticle synthesis.

Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4985805]

I. INTRODUCTION

It is known that a burning arc in a high pressure gas can

be a source of high intensity sound. These arcs are known as

hissing arcs.1–3 Usually, the frequency of such sound waves

is on the order of hundreds or thousands of Hz. This sound

can be related to the injection of erosion jets from electro-

des,4 spatial oscillations of the arc,5 or with periodic changes

of the volt-ampere characteristic. The last one can be stimu-

lated, for example, when an arc is maintained by an AC

source or by fluctuations of the current and the voltage in a

circuit with a DC source. Thus, the amplitude of power oscil-

lations in an arc discharge experiment with copper electrodes

in the atmosphere is about 1%–10%.6,7 Whereas in an arc

discharge experiment with carbon electrodes in a noble gas,

there can be intense transverse oscillations of the arc channel

with a frequency of about 100 Hz and current amplitude

oscillations of up to 50%.5

In the peripheral region of an arc with graphite electro-

des burning in a high pressure inert gas, a large number of

microscopic soot particles are produced together with nano-

particles. Intensive soot generation significantly reduces the

efficiency of the arc as the process results in the production

of fullerenes and other nanoparticles. Experimental studies

have shown that exposure of the peripheral region of the arc

to intense ultrasound leads to a noticeable increase in the

efficiency of the synthesis of nanoparticles and to the reduc-

tion in the yield of soot (see, e.g., Ref. 8). It was shown in

Ref. 9 that ultrasound, acting on the suspension of soot

microparticles and nanoparticles in an inert gas, results in

the coagulation of soot particles, without noticeably affecting

the small-scale nanoparticles. For larger particles, the effect

is stronger, and soot particles will be brought together in a

few seconds or even less. Thereafter, they fall out of the vol-

ume under the influence of gravity (similar to a standard

industrial method of ultrasonic cleaning of gases). It is

shown in this paper that relatively small fluctuations of

power in a high-pressure arc can be a source of high-

intensity sound comparable to that used in experiments.8

We will not consider the near electrode sheaths that can

be a source of current and voltage oscillations and therefore

a source of power oscillations. Thus, we consider the con-

ventional cylindrical channel arc model10,11 with an effective

channel radius r ¼ rch (Fig. 1) and a given oscillating source

of power (Joule’s heat). The self-consistent solution of the

channel model will not be found. For the sake of simplicity

of analysis, let us assume the given parameters of an equilib-

rium arc channel not bounded by walls. To obtain the param-

eters of the generated sound, the arc channel model was

supplemented with time-dependent gas dynamic equations.

The parameters of the arc in the channel model are

defined by the balance of Joule power

Q0ðrÞ ¼ j2ðrÞ=rðrÞ; W=m3; (1)

and heat losses due to heat conduction.10 Here, jðrÞ; rðrÞ are

averaged over time local values of current density and con-

ductivity in the channel model. We will consider the arc with

a thermal source at equilibrium (1) with small oscillating

perturbations.

Qðr; tÞ ¼ Q0ðrÞ þ Q0ðr; tÞ; jQ0j=Q0 � 1: (2)

FIG. 1. Qualitative radial distributions of the equilibrium temperature T0ðrÞ
and conductivity rðrÞ in the channel model.a)m.n.shneider@gmail.com
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The amplitude and the frequency of the perturbations

determine the parameters of the radiated cylindrical sound

wave.

II. THEORETICAL MODEL AND RESULTS

Let us find the characteristic parameters of a sound

wave created by perturbations of the heat source power

Qðr; tÞ in the arc channel. We start with the following stan-

dard set of equations12

qT
@s

@t
þ v

@s

@r

� �
¼ 1

r

@

@r
rj
@T

@r

� �
þ Q r; tð Þ; (3)

@q
@t
þ 1

r

@

@r
r qvð Þð Þ ¼ 0; (4)

@v

@t
þ v

@v

@r
¼ � 1

q
@p

@r
; (5)

p ¼ qRT=l; (6)

where q is the density, j is the thermal conductivity of the

air plasma, and v, s, p, l, and R are the radial velocity,

entropy, pressure, averaged molar mass and gas constant

of air. Equation (3) expresses the first law of thermody-

namics for a given part of the moving gas; Eqs. (4) and (5)

represent the conservation of mass and the Euler equation

for momentum conservation; Eq. (6) is the equation of

state for an ideal gas. While we consider small perturba-

tions of the arc at equilibrium, we can neglect the power

loss caused by radiation, because the typical temperature

at the axis is about T � 6000–8000 K.9,10 For definiteness,

we assume that Tðr ¼ 0Þ ¼ 7000 K. At such temperature,

ionization in the air plasma is quite small, �10–4,10 thus

we can use the equation of state (6) and neglect contribu-

tions of the other components of plasma in the equation of

state.

As mentioned before, we will consider relatively weak

perturbations of power (2) and solve equations (3)–(6) with

the use of perturbation theory. The zeroth order solutions

have the following form:

s ¼ s0; T ¼ T0ðrÞ p ¼ p0; v ¼ 0 ; q ¼ q0ðrÞ
¼ p0l=RT0ðrÞ: (7)

The only unknown function is T0ðrÞ, which can be found using

the channel arc model.10 As already mentioned in this paper,

we do not calculate the equilibrium temperature self-

consistently, but we consider it to be given, Tð0Þ � Tðr ¼ rchÞ.
In the cylindrical geometry outside the region of energy release

(at r � rch), T0ðrÞ � Tð0Þ � Q0r2
ch

2j ln r
rch

� �
.

The first order of perturbation theory is given by linear-

izing (3)–(6)

p0l
R

@s0

@t
¼ 1

r

@

@r
rj
@T0

@r

� �
þ Q0 r; tð Þ; (8)

@q0

@t
þ q0 rð Þ

r

@

@r
rv0ð Þ ¼ 0; (9)

@v0

@t
¼ � 1

q0 rð Þ
@p0

@r
: (10)

where the perturbation of every quantity is denoted with a

prime. The system of three equations (8)–(10) contains five

unknown functions s0; T0; v0; q0; p0. It is convenient to

express all these variations only through p0 and T0 using the

law of thermodynamics (3) and the equation of state (6)

q0 ¼ lp0=RT0 � lp0T0=RT2
0 :

From the entropy variation ds ¼ ð@s=@TÞpdT þ ð@s=@pÞTdp

follows ds ¼ cp
dT

T0ðrÞ

� �
þ @s

@p

� �
p
dp, where we have used the

definition of specific heat cp.13 To get the partial derivative

of entropy with respect to pressure, we use the standard ther-

modynamic relations13

ð@s=@pÞT ¼ �ð@s=@TÞpð@T=@pÞs
¼ �ð@s=@TÞpðT0=p0Þð@lnT=@lnpÞs
¼ �ðc� 1Þcp=cp0; (11)

where c ¼ cp=cv. Finally, we get

cpq0 rð Þ @T0

@t
� c#lcp

R

@p0

@t
¼ 1

r

@

@r
rj
@T0

@r

� �
þ Q0 r; tð Þ; (12)

@p0

@t
¼ 1

r

@

@r
rj
@T0

@r

� �
þ Q0 r; tð Þ; (13)

q0 rð Þ
p0

@2p0

@t2
� q0 rð Þ

T0 rð Þ
@2T0

@t2
� 1

r

@

@r
r
@p0

@r

� �
¼ 0; (14)

where we have introduced the notation c# ¼ 1� 1=c. The

system of equations (12)–(14) is linear, but has quite a high

order, which makes it difficult to solve it analytically. Also,

the presence of the non-trivial function of temperature T0ðrÞ
makes the problem more complicated. Nevertheless, we can

simplify the given set of equations. Let us estimate whether

we can neglect the heat conduction term 1
r
@
@r rj @T0

@r

� �
in Eqs.

(12) and (13). From Eq. (12), we can deduce the characteris-

tic scale for changing temperature lT and compare it with the

arc channel radius rch. By order of magnitude

1

r

@

@r
rj
@T0

@r

� �
� j � T0

l2
T

;
lcp

R
xp0 � cpq0 rð ÞxT0:

Thus, the heat conduction term can be neglected, if

l2
T �

j
2pcpq0ðrÞf

: (15)

Taking into account that the characteristic thermal scale

is lT � rch, from (15), we can obtain an estimate of the

range of perturbation frequencies at which the thermal con-

ductivity term can be neglected

f � j
2pcpq0 rchð Þr2

ch

� 600 Hz; (16)

where we assumed the channel radius rch ¼ 0:25 cm and

have used the equations of state to show that p0

p � T0

T ,
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therefore, both terms on the left-hand side of Eq. (12) have

the same order. As the usual sound frequency in an experi-

ment is f � 103 Hz, we can neglect the term j 1
r
@
@r r @T0

@r

� �
.

Physically, this means that the temperature perturbation can-

not change because of the thermal conductivity during the

period of acoustic oscillations. The only physical quantity

that propagates fast across the system is pressure. We came

to the following set of equations:

cpq0 rð Þ @T0

@t
� c#lcpR

@p0

@t
¼ Q0 r; tð Þ; (17)

q0 rð Þ
p0

@2p0

@t2
� q0 rð Þ

T0 rð Þ
@2T0

@t2
� 1

r

@

@r
r
@p0

@r

� �
¼ 0: (18)

Taking a time derivative of the first equation and substituting

it into the second equation, we will get an analog of the

wave equation

1

c2
s rð Þ

@2p0

@t2
� 1

r

@

@r
r
@p0

@r

� �
¼ 1

cpT0 rð Þ
@Q0 r; tð Þ

@t
; (19)

where csðrÞ ¼ cRT0ðrÞ
l

� �1=2

is the corresponding local sound

velocity. Because the perturbations of power Q0ðr; tÞ 6¼ 0 exist

only inside the arc channel and at the frequency f ¼ x=2p �
103 Hz, the wavelength of a sonic wave is k ¼ csðTÞ=f � 0:5
m, so k� rch; we may consider that p0 does not depend on

spatial coordinates inside the arc channel and its vicinity.

Equation (19) leads to a relation between the amplitude of the

heat released and the pressure perturbations

p0a rcð Þ ¼
c2

s Q0

cpT0x
� 2

3

Q0

x
; (20)

where cp ¼ 5R=2, and we have assumed Q0; p0ðr; tÞ / e�ixt.

Let us introduce the factor g ¼ Q0=Q0

Q0 ¼ gQ0 ¼ grE2: (21)

Outside of the channel, there is no heat production and Eq.

(19) is reduced to a standard free wave equation for p0ðr; tÞ

1

c2
s rð Þ

@2p0

@t2
� 1

r

@

@r
r
@p0

@r

� �
¼ 0; (22)

with the amplitude at the channel boundary given by Eq. (20).

By substituting p0ðr; tÞ ¼ p0aðrÞe�ixt into Eq. (22), we

get the equation for the amplitude of pressure

@2p0a
@r2
þ 1

r

@p0a
@r
þ x2

c2
s rð Þ p

0
a ¼ 0: (23)

Replacing p0aðrÞ by the anzats p0aðrÞ ¼ r�1=2f ðrÞ in Eq. (23),

we get the following equation on f ðrÞ:

@2f

@r2
þ 1

4r2
þ x2

c2
s rð Þ

 !
f ¼ 0: (24)

When we consider the solution in the vicinity of the channel

r � rch � ccðrchÞ=x, we can neglect x=csðrchÞ by compar-

ing to 1=r and get the solution as

f ðrÞ ¼ Br1=2lnðr=AÞ; (25)

where A and B are some constants to be determined. These

constants are obtained by considering the region, where

r � csðrchÞ=x ¼ 1=k0. The solution in this region can be

approximated as

f ðrÞ ¼ r1=2 CH1
0ðk0rÞ þ DH2

0ðk0rÞ
� 	

: (26)

Expanding this approximation in the vicinity of the

channel, we get

f ðrÞ � r1=2ðCþ DÞlnðk0rÞ: (27)

Comparing (25) and (27), we can conclude that

A ¼ 1=k0 ¼ csðrchÞ=x. Using the boundary condition (20),

we can find the constant B in (25) and derive the following

relation for the amplitude of pressure:

p0a rð Þ � 2

3

Q0ln xr=cs rð Þ
� �

xln xrch=cs rchð Þ
� � ; (28)

in the near field region, when x2r2
ch=c2

s ðrchÞ � 1 and

k� rch.

The relation between the pressure and the acoustic oscilla-

tory velocity amplitude uðrÞ of the wave follows from Eq. (10)

xq1T1
T0 rð Þ u ¼ 2Q0

3xrln xrch=cs rchð Þ
� � ; (29)

where q0ðrÞ ¼ q1T1=T0ðrÞ at constant pressure; q1 and

T1 correspond to the density and the temperature of the

unperturbed gas at infinity, (r � rch). Finally, it gives us the

following relation for the amplitude of the oscillatory veloc-

ity in the sound wave on the arc channel boundary:

u rchð Þ � �
2Q0T0 rchð Þ

3q1T1x2rchln xrch=cs rchð Þ
� � : (30)

III. DISCUSSION

The values of the pressure and the velocity amplitudes

of acoustic oscillations (28) and (30) at the arc channel

boundary r ¼ rch can serve as boundary conditions in the

classical problem of an infinite cylindrical sound source in a

gas.12 Since the wavelength of the excited sound in the fre-

quency range of interest to us k � 10 cm much exceeds the

typical sizes of the inter-electrode gap of high pressure arcs,

the radiated sound waves degenerate into spherical ones at a

distance �k. However, in the near zone, at a distance of up

to several centimeters from the arc channel, the cylindrical

approximation is quite valid. In this region, where the gas

temperature falls to �1500 K and below, carbon nanopar-

ticles are synthesized in arc discharges with graphite electro-

des in inert high-pressure gases.14

An estimate of the sound wave intensity in the near field

follows from (28). In conventional units, the intensity is15

LpðrÞ ¼ 20lgðp0rmsðrÞ=pref Þ; (31)

where p0rmsðrÞ ¼ p0ðrÞ=
ffiffiffi
2
p

and pref ¼ 2	 10�5 Pa is the

standard reference sound pressure.
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As an example, for the arc in air at p1 ¼ 760 Torr,

T1 ¼ 300 K, the arc channel radius rch ¼ 0:5 cm, the core

temperature T0ð0Þ � T0ðrchÞ ¼ 7000 K, and oscillation fre-

quency f ¼ 2000 Hz, taking into account the typical magni-

tude of the electric field E � 1000 V/m and the equilibrium

conductivity rðTðrchÞÞ � 50 X�1 m�1,10 we get: if g ¼ 0:01,

at r ¼ rch ¼ 0:25 cm and outside the channel at r1 ¼ 1:5 cm,

the intensity of the sound wave LpðrÞ equals 119.43 and

110 dB, correspondingly. While for g ¼ 0:05, at the same

rch; r1, the corresponding values for the ultrasound intensities

are 133.4 and 124.4 dB. Thus, we see that the power pertur-

bations in the arc channel, even for amplitudes about a few

percent out of averaged Joule power, can produce a high

intensity sound, which is of the order or exceeds 100–120 dB

in the vicinity of the arc. Such intensity is at the same scale

as the sound generated by the external source in the experi-

ments mentioned above.8

IV. CONCLUSIONS

We have considered a simple model of sound generation

by an electric arc with a fluctuating power source, and esti-

mation formulas for the generated sound intensity were

obtained. Small perturbations of Joule heating in a stationary

high pressure arc can be an intensive source of sound and,

therefore, can have a strong influence on the coagulation of

soot and lead to the increased production of fullerenes and

nanoparticles.
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