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A short atmospheric pressure argon arc is studied numerically and analytically. In a short arc with

an inter-electrode gap of several millimeters, non-equilibrium effects in plasma play an important

role in operation of the arc. High anode temperature leads to electron emission and intensive radia-

tion from its surface. A complete, self-consistent analytical model of the whole arc comprising of

models for near-electrode regions, arc column, and a model of heat transfer in cylindrical electro-

des was developed. The model predicts the width of non-equilibrium layers and arc column, vol-

tages and plasma profiles in these regions, and heat and ion fluxes to the electrodes. Parametric

studies of the arc have been performed for a range of the arc current densities, inter-electrode gap

widths, and gas pressures. The model was validated against experimental data and verified by com-

parison with numerical solution. Good agreement between the analytical model and simulations

and reasonable agreement with experimental data were obtained. Published by AIP Publishing.
https://doi.org/10.1063/1.5007084

I. INTRODUCTION

Atmospheric pressure arcs recently found application in

production of nanoparticles, such as carbon nanotubes1–5 and

boron-nitride nanotubes.6 Distinguishing features of such

arcs are typically short length of about several millimeters

between electrodes and hot ablating anode characterized by

intensive electron emission and radiation from its surface.

Electrode ablation significantly increases the complexity of

the arc physics and chemistry. As a first step, a short argon

arc with cylindrical tungsten electrodes is studied in this

series of papers. No ablation takes place from tungsten elec-

trodes, but effects of emission, radiation, and non-

equilibrium layers are still pronounced. Results of a carbon

arc with graphite electrodes in helium atmosphere will be

presented in subsequent publications.

The first paper of the series7 was dedicated to the

numerical simulation of an argon arc with cylindrical tung-

sten electrodes with emphasis on non-equilibrium effects in

the near-electrode regions. It was shown that the non-

equilibrium effects play an important role in the operation

of the arc and should be taken into account in modeling. It

was also shown that the electron emission from the anode

surface can significantly affect the potential drop in the

plasma region near the anode.

Though the numerical simulations can yield all arc

plasma profiles, theoretical analysis can unravel complicated

physical processes underpinning the arc self-organization.

Scaling laws of crucial arc characteristics such as potential

drops in different arc regions and heat fluxes to electrodes

with arc current, pressure, and inter-electrode width obtained

theoretically are used for planning experimental campaigns

and choosing right arc parameters for arc applications. A

self-consistent analytical model of the whole arc is helpful

for fast assessments of the arc experimental setup design.

These predictions are also important for the verification of

numerical codes, for instance, for verifying whether results

of the numerical simulations exhibit correct asymptotical

behavior. The developed analytical model provides under-

standing of which terms in the governing equations are of

major importance and which can be neglected. This knowl-

edge can be used for simplification of numerical codes.

Argon arc was extensively studied previously. However,

among modeling papers, mostly numerical studies rather

than analytical studies are present in the literature.

Significant part of the studies is focusing on one or another

part of the arc, not considering arc as a whole. For example,

numerous numerical studies of the anodic region can be

found in the literature.8–12 Thorough reviews on numerical

and experimental studies of the near-anode region of arc dis-

charges can be found in Refs. 13 and 14. Approximate rela-

tion for heat flux to the anode and heuristic assessment for

the width of the near-anode region can be found in Ref. 14,

for instance. However, we could not find a self-consistent

analytical model of the region, providing accurate relations

for its width and voltage. We also could not find papers con-

sidering a hot electron emitting anode. Analytical models of

the arc column are limited to the case of long arcs where no

variation of plasma parameters along the axis takes place in

the arc column.15,16 Analytical studies of the cathodic region

either focus on energy balance17–19 or on the ion trans-

port.20,21 We could not a find self-consistent model of the

cathodic region coupling all the effects of heat conduction in

the electrode, ion generation and transport, and the sheath

voltage drop.

The 1D model of argon arc presented in the first paper

of the series7 features non-equilibrium plasma transport

equations with the transport coefficients derived from kinetic

theory.22 The results of numerical solution of the non-

equilibrium plasma transport equations were compared with

simulations of Ref. 22 and validated against experimental

data.23,24 The transport equations were thoroughly described

in Ref. 7 and will be used in the current paper.
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Parametric studies of the atmospheric pressure argon

arc for various current densities and inter-electrode gap

sizes were performed in Ref. 7. It was shown, in particular,

that the different arc regions are rather autonomic even in

the case of short arcs (weakly depend on the arc length) and

can be considered separately. Based on the results of the

simulations performed and presented in the first paper,7 the

current study reports the self-consistent analytical models

of the near-electrode regions and the arc column combined

into a unified self-consistent analytical model of the whole

arc. Non-equilibrium processes in plasma and effects of

near-electrode space-charge sheaths are taken into account.

The analytical model is capable of predicting the arc struc-

ture, plasma parameters, and voltages in different arc

regions, their sizes, and heat fluxes to the electrodes. The

analytical arc model was benchmarked against the simula-

tions and validated against experimental data of Ref. 23.

Results for background argon pressures of 1 atm. and 3 atm.

will be presented.

The organization of the paper is as follows. In Sec. II,

the system of equations describing non-equilibrium trans-

port processes in the arc is given. The model of the

cathodic region is presented in Sec. III, providing relations

for the region width, voltage, heat flux, and ion current to

the cathode and electron temperature. Section IV is

devoted to the arc column, where it is shown that a single

differential equation for the gas temperature profile can

describe the arc column; asymptotic solutions for the tem-

perature profile and relation for the arc column voltage are

derived. In Sec. V, the analytical model of the anodic

region is given, providing relations for the anodic region

width, voltage, and heat flux to the electrode. In Sec. VI,

developed asymptotic solutions for the all arc regions are

used to calculate the Volt-Ampere characteristic (VAC) of

the entire arc. Theoretical results for VAC are also vali-

dated against the available experimental data. Conclusions

of this work are summarized in Sec. VII.

II. BASIC TRANSPORT EQUATIONS IN THE ARC
MODEL

In this section, the system of transport equations

describing species transport and heat transfer in the arc is

presented. The full set of governing transport equations for

the arc was already given in the first paper of this series7

and in Ref. 22 with proper description and derivation.

Equations are formulated for quasi-neutral plasma outside

space-charge sheaths. Here, we repeat these equations

briefly.

Electric field can be expressed using generalized Ohm’s

law that takes into account electron diffusion, thermal diffu-

sion, and electron-ion friction

~E ¼ � k

e
1þ CðeÞe

� �
rTe �

k

e
Te
rn

n
�
~Ce

ne
me �e;a þ �e;ið Þ

þ me

e
�e;a

~Ca

na
þ �e;i

~Ci

n

 !
; (1)

where e is the elementary charge, k is the Boltzmann con-

stant, n � ne ¼ ni is the density of electrons and ions

(quasi-neutrality approximation is used in this paper), na is

the density of neutral atoms, and other variables are defined

below.

For the ion transport, we use the ion continuity equation,

where the electric field is excluded using electron flux, ~Ce,

and assuming that gas velocity is negligible in 1D approxi-

mation. This gives for the ion flux, ~Ci, the ambipolar diffu-

sion, and thermal diffusion [(see Ref. 7, Eq. (39)]

~Ci ¼ �Drn� n DTrlnT þ DTerlnTeð Þ � Ae
~Ce; (2)

where D ¼ kðT þ TeÞ=ð0:5ð�i;a þ �a;iÞmAr þ �a;emeÞ is the

ambipolar diffusion coefficient, DT ¼ D T=ðT þ TeÞ,
DTe ¼ D Te=ðT þ TeÞ is the thermal diffusion coefficient,

Ae ¼ ð�e;ameÞ=ð0:5ð�i;a þ �a;iÞmAr þ �a;emeÞ is a kinetic coef-

ficient, �k;j is the effective collision frequency of species k
with species j

�k;j ¼
4

3

ffiffiffiffiffiffiffiffiffiffi
8kTkj

pmkj

s
Ckjrkjnj;

where subscripts k, j denote different species: argon atoms a,

argon ions i, and electrons e, nk—number density of species k,

mkj ¼
mkmj

mk þ mj
; Tkj ¼

mkTj þ mjTk

mk þ mj
:

Here, mk is the mass of particles of a sort k, Tk is their tem-

perature, ~Ck is the flux of species k, and rkj is the collision

cross section. Temperatures and masses of heavy particles

are very close and are not distinguished in the model:

Ti ¼ Ta ¼ T, mi ¼ ma ¼ mAr .

For electron-ion collisions, cross-section is

rei ¼
e4lnK

32pe2
0 kTeð Þ2

; (3)

where e0 is the vacuum permittivity, lnK ¼ ln 8pe0kTeðffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e0kTe=n

p
=e3Þ is the Coulomb logarithm, and Ckj, C

ðeÞ
k are

the numerical coefficients of order of unity that are given in

Refs. 7 and 22. For strongly ionized plasma, CðeÞe ¼ 0:7.

In quasineutral approximation, electron and ion density

is determined by continuity equation [see Ref. 7, Eq. (40)]

r n~VT � Drn
� �

¼ si þ~Ce � rAe; (4)

where ~VT � DTrlnT þ DTe
rlnTe accounts for thermal dif-

fusion effects, si ¼ kinna � krn
3 is the volumetric plasma

source (ionization) and sink (three body recombination), and

ki, kr are the temperature-dependent reaction rate coeffi-

cients. Arrhenius-like approximations for ki and kr were used

in the analytical model

ki Tð Þ ¼ Ai exp �Ti=Tð Þ; kr Tð Þ ¼ Ar exp Tr=Tð Þ;
Ai ¼ 1:5� 10�14 m3=s; Ti ¼ 140 000 K;

Ar ¼ 10�43 m6=s; Tr ¼ 51 000 K:

(5)
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These simple relations are rather good approximations of

more accurate formulae, in which ki is calculated as

described in Ref. 25, and kr is calculated to satisfy the

ionization-recombination balance (deviation between accu-

rate and approximate values does not exceed 20% in a tem-

perature range 5000 K–16 000 K)

kina ¼ krn
2
Saha; (6)

where ne;Saha is the equilibrium number density defined by

the Saha equation

n2
Saha

na
¼ 2gi=ga

2pmekTe

h2

� �3=2

exp � eEion

kTe

� �
: (7)

Here, gi=ga ¼ 6 is the ratio of statistical weights of ground

state and ionized state, see Ref. 26, h is the Planck’s con-

stant, and Eion is the ionization energy of argon atoms.

Note that similar approximations of coefficients (5) can

be found in other papers.27,28

Transport of energy of electrons and heavy particles are

described by the following equations:

r � 3:2
k

e
Te
~Ce

� �
¼ r � kerTeð Þ � e~Ce � ~E

� Qe�h � Qion � Qrad; (8)

0 ¼ r � khrTð Þ þ Qe�h þ~Ci � ~E; (9)

where coefficient 3.2 in the left-hand side of Eq. (8) is

derived from kinetic theory in the limit of strongly ionized

plasma (�e;a � �e;i), and the electron-ion collision fre-

quency is large compared to electron-atom collision fre-

quency (3:2 ¼ 2:5þ A
ðeÞ
i þ AðeÞa , see Refs. 7 and 22] for

details). As was shown in Ref. 7, this condition is valid for

most of the arc including a major part of the near-electrode

non-equilibrium regions. ke is the thermal conductivity of

electron gas22

ke ¼ kn
3p
10

ffiffiffiffiffiffiffiffiffi
8kTe

p me

s
1

rei
:

kh is the thermal conductivity of and heavy particles, and

Qe�h ¼ Ae�HðTe � TÞ is the volumetric heat exchange

between electrons and heavy particles

Ae�H ¼ 8n2
erei

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kmeTe

p

r
k

m
:

Qrad represents the volumetric radiation losses22

Qrad ¼ 2:6� 1025 W=m3 p

1 atm

1 K

Te

� �2:52

� exp � 1:69� 105 K

Te

 !
: (10)

Equation (8) is a simplified version of Eq. (12) of Ref. 7,

where it was taken into account that the ion current is small

compared to the arc current everywhere except for the near-

cathode region where ionization degree is small.

In 1D approximation, there is no gas flow, and the total

plasma and gas pressure is constant

nkTe þ na þ nð ÞkT ¼ p: (11)

Electrode temperatures are important parameters that affect

current propagation due to electron emission. To determine

electrode temperatures, the heat transfer equations have to

be solved in electrodes. Heat transfer equations along the

axis of cylindrical electrodes can be reduced to 1D approxi-

mation by neglecting temperature variation in radial direc-

tion, and temperature profile is governed by the following

equation:

pr2
el

d

dx
kel

dT

dx

� �
¼ 2p½ T � Tambð Þkgas Nu

þ er T4 � T4
amb

� �
� þ pr2

elj
2qel: (12)

Here, kel is thermal conductivity of the electrode material

(assumed to be constant, 170 W/m/K for tungsten), rel is the

electrode radius, Tamb ¼ 300 K is the ambient temperature,

kgas ffi 0:1 W=m=K is the thermal conductivity of gas sur-

rounding the electrode, Nu is the Nusselt number taken equal

to 1.1, see Ref. 29, r is the Stefan-Boltzmann constant, e is

the emissivity taken equal to 1, qel is the electrical resistivity

of the electrode material (assumed to be constant, small for

metallic electrodes), and j is the current density, assumed

constant along the arc.

At the plasma facing surface of the electrode, the heat

flux from plasma can be used as a boundary condition

qel;tip ¼ kel
dT

dx

� �
front

¼ qto electrode � qrad;front: (13)

Here, qto electrode denotes the heat flux from plasma to the

electrode, and qrad;front denotes the radiation heat flux from

the front surfaces of the electrodes including mutual radia-

tion.29 However, according to results of the 1D simulations

performed in Ref. 7, the net radiation from the front surfaces

of thin electrodes appeared to be of minor importance (due

to a significant portion of incident radiation from the oppo-

site electrode) and is not taken into account in the analytical

model. At the opposite surface of the electrode (away from

plasma), one can use the ambient gas temperature condition.

If the electrode is sufficiently long, then all the heat from

plasma and Joule heat generated inside the electrode are lost

at side walls due to radiation and thermal conduction into the

ambient gas. A condition of vanishing heat flux at the oppo-

site surface of the electrode (away from plasma) can be used

in this case. With this boundary condition and for constant

transport coefficients, Eq. (12) can be also solved analyti-

cally to yield
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qh: cond:ðTÞ ¼ T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

kel

rel
Nu

kgas

rel
1� 2

Tamb

T

� �
þ 2

5
re T3 � T4

amb

T

� � !
� 2

j2qelkel

T

vuut ; (14)

where qh: cond: is the heat flux through a cross section with

temperature T and Tamb is the temperature of the ambient

gas. Solution (14) is used in the analytical model described

further.

Substitution of temperature at the front surface of an

electrode Tel in relation (14) yields heat flux into the elec-

trode from the plasma because the electrode temperature is

much higher than ambient temperature and electrical resis-

tivity of metallic electrodes is negligible; relation (14) can

be significantly simplified, and the heat flux into the elec-

trode can be expressed by

qh: cond: ffi T2:5
el

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

5

kel

rel
re

s
: (15)

In (15), it was assumed that the electrode radius is not less

than 1 mm in order to neglect the term accounting for ther-

mal conduction of the ambient gas. Solution (15) is used in

the analytical model described further.

III. MODEL OF THE CATHODIC REGION

A. Voltage in the near-cathode layer

Simulation results for the near-cathode region of atmo-

spheric pressure arc in 1D approximation are shown in Fig. 1

for various current densities. In the simulations, electrode

temperature was determined from the self-consistent heat

transfer equations between plasma and the cathode; the elec-

trode diameter is 6 mm.

Deviation from the ionization and thermal equilibrium

is clearly evident in Figs. 1(a) and 1(b). In the plasma bulk,

temperatures of electrons and heavy particles are equal due

to high collisional heat exchange, and plasma density can be

described by the equilibrium relation (Saha equation) (7).

The electron temperature at the cathode is high due to high

energy of the emitted electrons after they have been

accelerated inside the cathode sheath. While moving inside

the plasma, these electrons lose their energy due to exchange

with colder bulk plasma electrons and due to inelastic pro-

cesses (ionization and excitation). Accordingly, the electron

temperature decreases towards the plasma, whereas the

temperature of heavy particles decreases towards the cath-

ode and becomes equal to the electrode temperature at the

cathode front surface. Elevated electron temperature

implies the increase of the equilibrium electron number

density according to the Saha equation [shown by dotted

lines in the Fig. 1(b) for ionization equilibrium, ne,Saha],

whereas the actual plasma density decreases due to ion

acceleration towards the cathode surface. Difference

between equilibrium and actual plasma densities results in

high net production of ions that move towards the cathode

due to the drift in the electric field and diffusion driven by

the plasma density gradient.

In order to determine voltage drop in the near-cathode

region of plasma, it is convenient to consider energy balance

in this region (see Fig. 2) as it was done, for example, in

Refs. 17, 18, and 19. Consider integral energy balance in the

region. Energy released in the near-cathode region is a prod-

uct of the current density and voltage drop. This energy is

transferred to bulk plasma and to the cathode. As shown in

Ref. 7, the heat flux in plasma outside the near-cathode

region is mostly transferred by convection of electrons, i.e.,

contribution of the thermal conductivity can be neglected.

The electron current constitutes most of the total current den-

sity (the ion current is small compared to the total current).

Accordingly, the heat flux from the near-cathode region to

the plasma can be written as 3:2ðk=eÞjTe;plasma. The simula-

tions have shown that this simplification is valid for rather

short arcs until near-electrode regions start to overlap. Note

that in Refs. 17 and 18 the heat flux to plasma was neglected

for simplicity, and in Ref. 19, similar simplifications to those

described above were used.

FIG. 1. Results of the 1D simulations for the near-cathode region of atmospheric pressure arc: (a) electron (dashed) and gas temperatures; (b) equilibrium and

actual electron density.
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Composition of energy flux from plasma to the cathode

is not important for this derivation. It will be considered fur-

ther in this section. Resultant energy balance relation for the

near-cathode region reads

j Vc layer ¼ qto cathode þ 3:2
k

e
jTe;plasma: (16)

Consider the heat balance at the cathode surface: the heat

flux to the cathode from plasma (see Fig. 2) is partially spent

on electrode cooling by electron emission because emitted

electrons overcome the surface potential barrier, i.e., work

function when exiting the electrode. This heat flux is equal

to j Vw. Both thermionically emitted electrons and electrons

neutralizing the ion flux are included giving the total current

as a sum. The rest of the heat is transferred into the cathode

body by heat conduction; heat radiation from the cathode

front surface is small compared to j Vw and is neglected

qto cathode ¼ j Vw þ qc: h: cond: (17)

Substitution of Eq. (16) into Eq. (17) gives cathode layer

voltage drop

Vc layer ¼ Vw þ 3:2
k

e
Te;plasma þ

qc: h: cond:

j
: (18)

Unknowns here are Te;plasma and qc: h: cond:. A term with

Te;plasma in (18) representing convection appears to be of order

of work function and cannot be omitted. The value of Te;plasma

can be determined from ion balance in the near-cathode

plasma region, as described in Sec. III C, Eq. (29). Note that,

1D simulations show that Te;plasma does not change signifi-

cantly with the arc current or pressure. It varies in a range

from about 12 000 K to 16 000 K with current density variation

from 2� 106 A/m2 to 2� 107 A/m2. For the sake of simplicity,

an approximate constant value of 14 000 K can be used for cur-

rent densities in the range considered, and variation of Te;plasma

around 14 000 K gives an error not exceeding 0.5 V (which is

less than 5% for the conditions considered). For better accu-

racy, or for different arc operating conditions, one can obtain

Te;plasma from Eq. (29). The results presented below were

obtained with the constant value of Te;plasma equal to 14 000 K.

Conductive heat flux into the cathode qc: h: cond: used in

Eqs. (18) and (29) can be determined by the substitution of

the electrode front surface temperature Tc into Eq. (15) yield-

ing the following relation for the cathode voltage:

Vc layer ¼ Vw þ 3:2
k

e
� Te;plasma þ T2:5

c

1

j

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4

5

kc

rc
re

s
: (19)

Here, kc is thermal conductivity of the cathode material and

rc is the cathode radius. Note that in the papers17–19 wide and

long cathodes were considered, and radiation from the cath-

ode surface was neglected resulting in a simpler relation for

the heat flux into the cathode compared to Eq. (15) for the

thin cylindrical cathode with radiation.

Temperature of the cathode front surface Tc can be

determined from current conservation at the cathode surface

j ¼ j R þ j i;c � jplasma
e : (20)

Here, j i;c is the ion current at the cathode surface, jplasma
e is

the current of plasma electrons to the cathode, which is typi-

cally negligible due to its suppression by the cathode sheath

voltage drop, and j R is the emission current described by the

Richardson formula

j R Telð Þ ¼ ART2
el exp � e Vw þ ESchottð Þ

k Tel

� �
: (21)

Here, AR is the Richardson’s constant, Vw is the work func-

tion of the electrode material (4.5 V for tungsten), and ESchott

is the Schottky correction voltage (about 0.1 V, see Ref. 20,

for instance).

Substitution of (21) into (20) and neglecting the

Schottky voltage yields a relation for the cathode surface

temperature Tc

Tc ¼
eVw

kln ART2
c= j� ji;cð Þ

� � : (22)

Ion current density at the cathode can be obtained from

energy balance in the near-cathode region, as described in

Sec. III B, Eq. (24). However, for the sake of simplicity, ion

current can be neglected, as it was done in Refs. 18 and 19,

and constant value of Tc can be used in the right-hand side of

(22). Due to logarithmic dependence of the cathode tempera-

ture on the emission current density in (22), neglecting ion

current in (22) should result in a very small error. For a typi-

cal ion current fraction of about 20%, error in the cathode

temperature is about aiðeVwÞ=ðkTcÞ 	 2% resulting in 5%

error of the heat flux to the cathode. For the same reason, a

constant value can be used for the cathode temperature Tc at

the right-hand side of Eq. (22). According to simulations,7

see Fig. 10 therein, the typical value of the cathode tempera-

ture is about 3500 K, and its variation with current density is

about 15%. Note, however, that these simplifications can

result in significant errors in the case of extensively cooled

cathode when emission current is low. Such an arc is not

considered in this paper; nevertheless, formula (22) without

the simplifications is applicable in this case as well. Also

note that the ion current cannot be neglected when consider-

ing energy transfer in the near-cathode plasma (further in

FIG. 2. Schematic energy balance in the cathodic region of the arc.
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this chapter) because ions transfer a significant fraction of

energy.

Analytical results for the voltage drop in the near-

cathode layer obtained with this approach are plotted in Fig.

3 in comparison with results of numerical simulations for

two different pressures. Note that the analytical relation for

cathode voltage (18) does not include the gas pressure, ion

current, and effects of other parts of the arc. The results of

full simulations for the cathode voltage Vc layer and the ana-

lytical solution at two different pressures are very close to

each other, therefore proving validity of the assumptions

used in the analytical model. At lower current densities, volt-

age in the near-cathode layer is high because a major portion

of the heat released in the layer is spent for heating the cath-

ode to the temperature sufficient for maintaining electron

emission. At higher current densities, a portion of the heat

required to heat up the cathode reduces, and the cathodic

voltage drop decreases asymptotically to the value

Vw þ 3:2ðk=eÞTe;plasma.

B. Ion current to the cathode

The results presented above were obtained only using

energy balance in the cathodic region and did not require

knowledge of plasma parameters (except for electron tem-

perature), composition of heat flux to the cathode surface,

and ion current. For completeness, we provide the descrip-

tion of the near-cathode plasma and determine the electron

temperature and thickness of the cathode layer, which are

required for coupling with the arc column model.

It is convenient to start consideration with ion current.

Ion current is important a mechanism of the cathode heat-

ing. As mentioned earlier, emitted electrons are accelerated

in the sheath and bring their energy to plasma. Hot plasma

electrons in the near-cathode layer lose their energy in

inelastic collisions (excitation and ionization). The ions

that impinge onto the cathode surface recombine with

electrons from the cathode and therefore release ionization

potential for each recombination and bring significant heat

flux to the cathode. In previous analytical theoretical

papers,17,19 it was assumed that the ion current is the only

source of energy flux to the cathode. However, it is rea-

sonable to assume that plasma electrons lose some portion

of their energy in elastic collisions with heavy particles,

and this energy is transferred to the cathode by thermal

conduction (due to temperature decrease towards the cath-

ode surface). In other words, there is some cost of ioniza-

tion eion (cost of creation of a single electron-ion pair)

which is higher than ionization potential

qto cathode ¼ eionji;c=e: (23)

If ionization cost is known, then ion current density can be

obtained from Eq. (23) using known cathode temperature

ji;c ¼ j
e

eion
Vw þ T2:5

c

1

j

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4

5

kc

rc
re

s0
@

1
A: (24)

Note that lengths of ionization and thermal non-equilibrium

regions are close [see Figs. 1(a) and 1(b)], in other words,

processes of ionization and elastic energy transfer from elec-

trons to heavy particles take place in more or less the same

region. Hence, conventional meaning of ionization cost

should be applicable here. Ionization cost is weakly depen-

dent on energy of electrons and pressure, and is typically

about twice ionization energy for rare gases (see Ref. 30, for

instance).

Comparison with results of the simulations (see Fig. 4)

has shown that good assessment for eion is 40 eV for pressure

1 atm and 50 eV for 3 atm confirming that the value is rather

conservative. For the sake of simplicity, a constant value of

40 eV can be utilized in the model of cathodic region.

Assumption that all of the heat is brought to the cathode by

FIG. 3. Voltage in the near-cathode layer as a function of total current den-

sity. Analytical solution (18) is in a good agreement with results of the simu-

lations.7 With decrease of the current, voltage in the layer becomes higher

because a larger portion of the heat released in the layer is spent for cathode

heating.

FIG. 4. Ion current fraction at the cathode as a function of the total current

density. With ionization cost eion in a range of 40 eV to 50 eV, agreement

between analytical solution (24) and results of the simulations7 is obtained.
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ions corresponding to ionization cost equal to ionization

energy leads to significant errors in values of ion current

(significant disagreement with results of the simulations). As

seen from Fig. 4, the ion current fraction is typically about

15%–20% and slightly decreases with total current density.

C. Electron temperature in the near-cathode region

Electron temperature at the plasma edge of the cathode

region, Te;plasma, is used in relation (18) for the cathodic volt-

age and is needed to describe interaction of the cathodic

region with the arc column. Ability to determine this param-

eter from the analytical arc model will make the model more

self-consistent, free of heuristic approximations.

Electron temperature in the cathode region can be

obtained using known ion current density to the cathode.

According to the simulations, major terms in the ion trans-

port equation (4) are diffusion rðDrnÞ and source si.

Hence, simplified (approximate) equation of ion transport

can be written as

d

dx
D

dn

dx

� �
¼ krn

3 � kinan: (25)

A simplified relation for the ambipolar diffusion coefficient

D can be used

D 	 2
k T þ Teð Þ
�i;amAr

	 3

8

ffiffiffiffiffiffiffiffi
p

mAr

r
k1:5T0:5 T þ Teð Þ

riap
: (26)

In expression (26), the collision frequency of a single atom

with ions �a;i is neglected as compared to collisions of an ion

with atoms �i;a due to rather low ionization degree in the

cathode region.

The diffusion coefficient D, neutrals number density na,

and reaction rate coefficients ki, kr are temperature-

dependent. For the sake of simplicity, temperature variation

across the near-cathode layer is out of the scope of the paper,

only level of temperature; some average value across the

region is of interest. It allows us to treat coefficients D, ki, kr ,

and na in (25) as constants and obtain analytical solution for

ion flux

1

D
C2

i ¼ n2 kr

2
n2 � kina

� �
þ const:; (27)

where ion flux is Ci ¼ �D dn=dx.

The constant in (27) can be determined from boundary

conditions at the arc column side where ionization equilib-

rium takes place (krn
2 ¼ kina) and ion flux is small (Ci 	 0).

In the vicinity of the cathode surface (at the sheath edge),

plasma density is small and can be set to zero. It gives a rela-

tion for ion current density at the cathode

ji;c ¼ ekina

ffiffiffiffiffiffiffi
D

2kr

r
: (28)

Ion current in the left-hand side of the equation is known

from Sec. III B, Eq. (24); coefficients in the right-hand side

are dependent on temperatures of the electrons and heavy

particles. Note that dependence on the electron temperature

is much stronger due to the presence of reaction rate coeffi-

cients, especially ki (5). Hence, approximate values for the

temperature of heavy particles can be utilized. In (26) it was

put equal to electron temperature making the right-hand side

of (28) dependent on electron temperature only and allowing

us to express the electron temperature. Due to low ionization

degree in the near-cathode region, a simplified relation for

number density of atoms can be used: na ¼ p=ðkTÞ.
Substitution of relations (5) into (28) and the ion current

from Eqs. (17) and (23) gives the following relation for the

electron temperature in the near-cathode region:

Te ¼ �
Ti þ 0:5Tr

ln
j Vw þ qc: h: cond:

eion

ffiffiffiffiffi
Ar

p

Ai

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8

3

ffiffiffiffiffiffiffiffiffiffi
mArk

p

r
ria

p

s ffiffiffiffiffi
Te

4
p0

@
1
A
:

(29)

Dependence of the right-hand side of Eq. (29) on electron

temperature is very weak. For the sake of simplicity, Te in

the right-hand side of Eq. (29) can be estimated by its aver-

age value of 14 000 K giving a straightforward relation for

Te. Results of application of relation (29) are plotted in Fig.

5 in comparison with temperature at the plasma edge of the

cathode region obtained in the simulations. Because relation

(29) does not take into account temperature non-uniformity

in the cathode layer and gives somehow averaged tempera-

ture along the region, complete agreement between the ana-

lytical results and the simulations was not expected.

However, the results appeared to be in rather good qualita-

tive and quantitative agreement. Therefore, one can use the

electron temperature obtained from (28) as an input parame-

ter for (16) if one wants to make more accurate assessments.

D. Width of the near-cathode region

Because temperature and coefficients in Eq. (25) are

known, it can be used for the determination of the ionization

non-equilibrium region width. The analytic solution of this

equation can be found in Ref. 21, and zero number density at

the cathode surface (x¼ 0) is assumed

FIG. 5. Electron temperature in the near-cathode region for atmospheric

pressure arc: analytical solution (29) VS simulations.7
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ne xð Þ ¼ ne;1tanh x

ffiffiffiffiffiffiffiffi
naki

2D

r !
; ne;1 ¼

ffiffiffiffiffiffiffiffiffi
na

ki

kr

r
: (30)

The solution predicts asymptotic approaching equilibrium

conditions. From (30), the width of ionization region Li can

be determined as

Li ¼
ffiffiffiffiffiffiffiffiffiffiffi

D

2naki

r
ata nh 1� eð Þ; (31)

where e is tolerance (relative discrepancy from equilibrium

conditions). Note that due to hyperbolic arctangents Li is

weakly dependent on the tolerance value: for e of 0.5%–2%

corresponding to large blue dots in Fig. 1(a), the length is

Li ¼ 5

ffiffiffiffiffiffiffiffi
D

naki

r
	 5

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

4

ffiffiffiffiffiffiffiffi
p

mAr

r
k2:5T2:5

e

riaki Teð Þ

s
: (32)

The ratio of the length of thermal non-equilibrium region LT

(see plot 1a) to the ionization non-equilibrium length Li can

be assessed by the ratio of relaxation lengths

LT

Li
	 LT;relax

Li;relax
: (33)

Relaxation length for concentration of ions Li;relax is defined

by a radical in relation (31). Relaxation length for the elec-

tron temperature LT;relax should be defined from electron heat

transfer Eq. (8). Taking into account that at high electron

temperatures near the cathode, thermal conductivity is very

high and elastic/inelastic heat exchange terms are of the

same order, relaxation length can be defined as

LT;relax ¼
ffiffiffiffiffiffiffiffiffiffi
ke

Ae�H

r
: (34)

From (33) and (34), thermal non-equilibrium width LT can

be expressed

LT

Li
	 32pe2

0

e4lnK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2:5riam1:5

Ar

5me

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pkr Teð ÞT2:5

e

q
: (35)

The Coulomb logarithm was assumed to be 5. Results

obtained with (32) and (35) are given in Fig. 6 in comparison

with the results of simulations for two pressures. Rather

good agreement for both pressures is observed.

IV. MODEL OF THE ARC COLUMN

A. Description of the non-uniform equilibrium region
with one equation

As previously mentioned, the arc plasma can be

described with non-linear differential equations for the trans-

port of ions (4), the heat transfer of electrons (8) and heavy

particles (9), and the electric field (11). The arc column is

defined as a region where the thermal and ionization equilib-

riums are maintained: ne ¼ nSaha and T ¼ Te, whereas

plasma parameters may be non-uniform. These algebraic

relations can be used to reduce the number of differential

equations to a single equation for one of the independent var-

iables. It is convenient to formulate this equation for the tem-

perature as an independent variable.

Equality of temperatures of electrons and heavy par-

ticles ðT ¼ TeÞ allows us to write a simple relation of energy

balance. Summation of equations for electron (8) and heavy

particle temperatures (9) results in canceling of the heat

exchange term between these species and yields relation for

energy balance of all plasma species as a whole

�3:2
k

e
~j � rT ¼ r � ke þ khð ÞrTð Þ þ~j � ~E � Qrad Tð Þ: (36)

Rather similar relation for energy balance in the arc column

was written in Refs. 15 and 16; however, long arcs were con-

sidered in these books and convective heat transfer and radi-

ation in the arc column were not taken into account.

Electric field in Eq. (36) can be expressed via gradient

of electron density using Eq. (11)

1:5
k

e
~j � rT þr � ke þ khð ÞrTð Þ

¼ k

e
T~j � rlnn� j2

nee2
me�e;i � Qrad: (37)

Note that in derivation of Eq. (37), it was taken into account

that electron-ion collisions are dominant and ion flux is neg-

ligible outside the near-cathode region [last term in relation

FIG. 6. Width of the near-cathode ionization (35) and thermal (32) non-equilibrium layers in comparison with results of the simulations.7
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(1) was omitted]. Equation (37) has only two independent

variables: n and T; transport coefficients can be expressed as

their functions. In the case of equilibrium, dependence

between these variables is determined by algebraic relations:

Saha equation (7) and equation of state (11). It allows

excluding electron density from the equation (and obtaining

an equation with a single independent variable—

temperature).

Relation between rn and rT

rlnn ¼ rlnT aþ b
eEion

kT

� �
; a ¼ 1� 5a

4� 2a
; b ¼ 1� a

2� a
:

(38)

a ¼ n
naþn is the ionization degree.

According to results of the simulations, the ionization

degree in the arc core does not exceed 50% for current densi-

ties up to 7:5� 106 A=m2 (see Fig. 8 in the first paper7).

Note that eEion 
 kT in the arc; if a < 0:5, then the coeffi-

cient b varies in the range 0.35–0.5 and jaj < 1:5b.

Therefore, the first term in the brackets in the right-hand side

of (38) can be omitted and (38) can be rewritten in an

approximate simplified form

rlnn 	 rlnT
eEion

2kT
: (39)

Saha equation (7) can also be used to express the transport

coefficients in (37) as functions of temperature

ke ¼ ~kT3:5; q ¼ ~q=T2:5; (40)

where q is the electrical resistivity and constants ~k and ~q are

~k ¼
ffiffiffiffiffiffi
2p
me

r
96pe2

0k3:5

5e4K2

; ~q ¼
ffiffiffiffiffiffiffiffi
2me

p

r
e3CeiEion

48pe2
0k2:5

: (41)

Similar relations were obtained in Ref. 31.

Substitution of relation (39) into Eq. (37) and usage of

the transport coefficients (40) yields the final equation for

the temperature

~kr � T3:5rTð Þ � Eion

2T
� 1:5

k

e

� �
~j � rT þ j2 ~q

T2:5
¼ Qrad Tð Þ:

(42)

In relation (42), it is taken into account that ke 
 kh and

ke 	 ke;i due to rather high ionization degree (according to

the simulations,7 a > 0:1 in the arc column for all current

densities considered).

In expressions (40), the following simplified relation for

the Coulomb logarithm was used. Making use of the Saha

equation (7), the Coulomb logarithm can be expressed as

lnK ¼ K0 þ
eEion

4kT
; K0 ¼ ln

8pe1:5
0 kTð Þ9=8

h3=4

2nagi=gað Þ1=4
2pmeð Þ3=8e3

 !
:

(43)

Note that K0 is small: for temperature in the range

12 000 K–18 000 K corresponding to the arc column (see Fig.

7), K0 varies from –0.25 to 0.2 [for na ¼ p=ðkTÞ and atmo-

spheric pressure], whereas the second term in the right-hand

side of Eq. (43) varies from 2.5 to 3.8 for this temperature

range. Accordingly, a simplified relation for the Coulomb

logarithm in the arc core was used

lnK 	 eEion

4kT
: (44)

B. Two-region analytical approximation

An exact solution of the temperature equation (42) in

the arc core can be obtained numerically (in 1D or 2D) using

the temperature near the cathode and temperature near the

anode as boundary conditions (with known widths of the

near-cathode and near-anode non-equilibrium regions); val-

ues for the near-anode region can be taken from the analyti-

cal model of this region described below. However, in 1D

case it is possible to obtain asymptotic analytical solutions

for different areas of the arc column and, therefore, describe

the column with several simple relations convenient for mak-

ing estimates.

In Fig. 7, the temperature profiles for 5 mm atmospheric

pressure arc are displayed for various current densities. At

high current density (starting from 5� 106 A=m2), the local

equilibrium between the Joule heating and radiation cooling is

established. It gives a nearly constant temperature in a signifi-

cant part of the gap. Exclusion of the temperature gradients

from Eq. (42) gives relation for equilibrium temperature

j2 ~q
T2:5

eq

¼ Qrad Teqð Þ: (45)

Substitution of (10) and (41) into (45) yields

Teq ¼ �
1:69� 105 K

2ln
j

8:5� 106 A=m2

� �
� ln

p

1 Pa

� � : (46)

The right-hand side of this relation is weakly dependent on

temperature; therefore, one can simply use an approximate

value of 15 000 K. The equilibrium temperature obtained

from (46) is plotted in Fig. 7 with dashed-dotted lines and is

in good agreement with the corresponding parts of tempera-

ture profiles.

Figure 7 shows that the transition region from the near

cathode region to the equilibrium region of the arc column

(where T ¼ const) is very short. This is due to close values

of temperature in the near-cathode and equilibrium regions.

At the anode side, the situation is reversed: there is a rather

long local-equilibrium part of the arc column where the ther-

mal and ionization equilibriums persist, whereas space varia-

tions of plasma parameters are present. In this region,

temperature decreases when approaching the anode where

the gas temperature should be equal to temperature of the

electrode.

Because temperature decreases towards the anode and

radiation is a strong function of temperature, radiation

becomes less important and the corresponding term can be
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omitted from Eq. (42). Also one can simplify the equation by

taking into account that eEion=ð2kTÞ 
 1:5 and that convec-

tive heat transfer is dominating over conductive one in most

part of the arc. With these simplifications, the approximate

relation for temperature variation in the local-equilibrium

region is given by

EionT1:5~j � rT ¼ 2j2~q: (47)

Equation (47) has the following physical meaning. As men-

tioned earlier, in the local equilibrium region temperature

decreases towards the anode and radiation becomes small as

compared to the equilibrium region, resulting in low energy

losses from the plasma. Conductive heat transfer in the arc

column plasma is small as compared to one attributed to the

convection of electrons. These simplifications allow rewrit-

ing equations for the electric field (1) and the energy balance

(36) in shorter forms

~E ¼ �1:7
k

e
rT � k

e
T
rn

n
þ
~j

ne
me�e;i; (48)

~E ¼ �3:2
k

e
rT: (49)

Taking into account that in the plasma column, where the

Saha equation (7) is satisfied, gradients of the temperature

are much smaller than gradients of the plasma density [see

Eq. (39)], from Eqs. (48) and (49), it is clear that the electric

field is small as compared to its two last components in the

right hand side of (48). In other words, the electric field com-

ponent representing electrical resistivity of plasma is almost

completely compensated by the oppositely directed field

component representing electron diffusion caused by the

electron density gradient. It means that electric field can be

neglected and electron flux is driven only by diffusion

~j ¼ k n T

me �e;i

rn

n
� 1:5

rT

T

� �
: (50)

Note that such description of plasma behavior is not common

for analytical models of near-electrode regions. Typically in

such models electric field is high and is defined by plasma

density gradient [second term in the right hand side of Eq.

(48), i.e., satisfies the Boltzmann distribution]. The present

study reveals that such models can be applicable only to

non-equilibrium regions significantly closer to the electrodes

than non-uniform parts of the arc column, i.e., to the regions

where the thermal conductivity plays an important role and

net ionization or recombination takes place.

First order differential equation (47) in 1D case requires

only one boundary condition. The solution of this equation is

given by

T ¼ 5j~q
Eion

xlocal eq � xð Þ þ T2:5
local eq

� �2=5

: (51)

Here, xlocal eq corresponds to an edge of the arc column at the

anode side, i.e., a location where the thermal equilibrium

breaks, and Tlocal eq is the temperature value at this location.

Methods of these parameters’ evaluation are described in

Subsections IV C and V D.

The solution (51) is displayed in Fig. 7 with colored

dashed lines. Rather good agreement with the results of 1D

simulations is observed at lower current densities. For higher

current densities, the thermal conductivity starts playing a

noticeable role. However the agreement is still reasonable

FIG. 7. Profiles of gas temperature (solid lines) and electron temperature (dotted lines) of atmospheric pressure arc at various current densities; result of simu-

lations7 and approximate solutions: (46)—dashed-dotted lines and (51)—dashed lines.
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and 2-region approximation [uniform region described by

(46) and non-uniform local-equilibrium region described by

(51)] can be used for description of the arc column, in partic-

ular, to obtain voltage.

Voltage in the arc column according to the 2-region

approximation is given by

Vcol ¼
Qrad Tð Þ

j
Leq þ 3:2

k

e
Teq � Tlocal eqð Þ; (52)

where the first term in the right-hand side part of the equa-

tion represents voltage in the equilibrium (uniform) region,

and the second term stands for voltage in the local equilib-

rium region which was derived from relation (36), where

radiation and thermal conductivities were neglected.

Using relation (51), one can determine the length of the

equilibrium and local-equilibrium regions

Llocal eq ¼ min Eion

T2:5
eq � T2:5

local eq

5j~q
; Lcolumn

 !
;

Leq ¼ Lcolumn � Llocal eq; (53)

where Lcolumn ¼ Larc � Lc layer � La layer, Lc layer is defined in

(32), and La layer is defined in (85).

C. Transition to the near-anode non-equilibrium region

When approaching the anode, the temperature of heavy

particles decreases (see Fig. 7) and becomes equal to the

anode temperature at its surface. Electron temperature

decreases as well due to energy exchange with the heavy par-

ticles via elastic collisions [see term Qe�h in Eqs. (8) and

(9)]. With the decrease of the electron temperature, plasma

density also becomes lower. As the result, the electron-heavy

particle heat exchange becomes low, and eventually devia-

tion between temperatures of the electrons and heavy par-

ticles takes place; notations xlocal eq and Tlocal eq are used in

this paper to determine this location and corresponding tem-

perature. Frequency of inelastic collisions also significantly

decreases towards the anode manifesting in the rate reduc-

tion of ionization and recombination and resulting in even-

tual deviation from the ionization equilibrium [plasma

density is no longer determined by Saha equation (7)].

In a general case, thermal and ionization equilibriums

can take place at different locations. However, as the results

of 1D simulations of argon arc have shown, these locations

are actually very close to each other (see Figs. 7 and 8). For

the sake of clarity, we will define the near-anode non-equi-

librium region as an area where the ionization equilibrium

breaks because it is convenient for further considerations of

the near-anode region.

Plasma temperature Tlocal eq at the location where the

local equilibrium breaks (transition point between the arc

column and the near-anode non-equilibrium layer) can be

determined making use the knowledge of variations of tem-

perature and plasma density in the arc column; location

xlocal eq is determined in Subsection V D.

In the arc column, equilibrium ion number density satisfies

the Saha equation and can be obtained from Eq. (6) which

implies zero net volumetric production of ions. In fact, there is

no absolute (pure) ionization equilibrium in any part of the arc:

ionization and recombination reactions take place throughout

the arc with more or less different rates. The difference between

the ion production and their recombination is balanced by

ambipolar diffusion. One can define ionization equilibrium as a

state at which relative difference between ionization and recom-

bination rates is smaller than some tolerance e

jkinan� krn
3j

kinan
� e: (54)

As temperature decreases when approaching the anode, the

ionization/recombination reaction rates become smaller, dif-

fusion plays a more significant role, and the equilibrium

eventually breaks. The difference between the ionization and

recombination rates is equal to divergence of the ion flux, so

inequality (54) can be reformulated as

jr~Cij
kinan

� e: (55)

The ion flux can be determined using Eq. (2), which can be

simplified. First of all, note that the coefficient Ae is really

small

Ae <
�e;ame

�i;ama
	

ffiffiffiffiffiffiffiffi
me

mAr

r
rei

ria
	 10�4;

(rea is about 3� 10�20 m2 and ria is about 10�18 m2).

The ion current is typically about several percent of total

current or less, so the last term in Eq. (2) can be omitted.

Then taking into account that �e;a � �i;a, T ¼ Te and rather

low ionization degree near the anode, one can write the

approximate relation for ion current as

~Ci 	 �
2kTrnþ 2knrT

0:5�i;amAr
: (56)

Saha relation (7), (39) and temperature variation equation

(47) can be used when approaching the location of the

FIG. 8. Electron number density profiles near the anode. Boundaries of the

near-anode ionization non-equilibrium region are marked with circles. Color

notations are the same as in Fig.7.
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equilibrium breakdown from the arc column side. The ion

flux can be expressed as a function of temperature

Ci 	 �2kn
dT

dx

eEion

2kT
þ 1

0:5mAr�i;a
	 4

j~qe

mAr�i;a

n

T2:5
: (57)

In formulation (57), x-axis and positive ion flux are directed

from the cathode to the anode. Substitution of (57) into (55)

and taking into account that na 	 p=ðkTÞ in �i;a allows us to

rewrite the left-hand side of local-equilibrium criterion as a

function of temperatureffiffiffiffiffiffiffiffi
pk

mAr

r
3 j~qeð Þ2

4riap2

1

ki Tð ÞT4:5
� e orffiffiffiffiffiffiffiffi

pk

mAr

r
3 j~qeð Þ2

4riap2

1

ki Tlocal eqð Þ T4:5
local eq

¼ e: (58)

For some fixed tolerance (it is convenient to take e ¼ 0:1
which corresponds to distinguishable difference between ne

and nSaha on the plot in Fig. 8), from (58) one can determine

the temperature at which ionization equilibrium breaks,

Tlocal eq. In Fig. 9, this temperature is given in comparison

with results of simulations. The temperature is plotted

against current density for two different pressures. Good

qualitative and quantitative agreement between the analytical

model and the simulations is observed.

V. MODEL OF THE ANODIC REGION

A. Qualitative description of the near-anode region
and its structure

In the near-anode region, the electron temperature devi-

ates from the temperature of heavy particles [see Fig. 10(b)]

and plasma density deviates from equilibrium values pre-

dicted by the Saha equation (7) [see Fig. 10(a)] resulting in

net recombination of ions. The ion recombination leads to

significant reduction in the ion current towards the anode

[see Fig. 10(c)]. Similar description of the near-anode region

can be found in Ref. 14, for instance.

The differential equation for conservation of ions

rCi ¼ si or (4) should be used instead of the Saha equation

(7) when describing the non-equilibrium region, making it

hard to obtain the analytical solution for non-equilibrium

plasma in a general case. However, as can be seen from Fig.

10, deviation from equilibrium grows gradually towards the

anode allowing us to derive an analytical solution for a sig-

nificant part of the near-anode region using approximation of

low deviation from the ionization equilibrium. Near the

anode surface, the temperature of heavy particles becomes

equal to the anode temperature. Despite the deviation, the

electron temperature also reduces to significantly low values:

simulations predict the electron temperature of about 5500 K

at the anode boundary [see Fig. 10(b)], with a weak depen-

dence on the current density. At such low temperatures,

assumption of low deviation from the ionization equilibrium

is apparently no longer valid. However, the ionization and

recombination rates are negligible at these conditions allow-

ing us to use the constant ion current relation and to obtain

the analytical solution.

According to the picture described above, the whole

near-anode region can be analytically described using sepa-

rate models for the following sub-regions: (i) recombination

region where deviation from Saha equilibrium is relatively

low, (ii) constant ion current region, and (iii) the space-

charge sheath. Corresponding models for these regions are

given in the Subsections V B–V D below.

B. Model of the recombination region

Some of the simplifications used for the local-

equilibrium region of the arc column can also be applied to

the recombination region of the near-anode layer: thermal

conductivity and deviation between temperatures of elec-

trons and heavy particles can be neglected. The radiation is

assumed negligible, and electron-ion collisions dominate

FIG. 9. Temperature at the edge of the anode non-equilibrium layer (58) in

comparison with results of the simulations.7

FIG. 10. Structure of the near-anode non-equilibrium layer. Plasma density

(a), temperature (b) and ion current (c) profiles obtained in the simulations7

for current density 5� 106 A/m2 and pressure 1 atm are plotted.
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over electron-atom collisions. However, because the ioniza-

tion equilibrium is not maintained, approximation (44) for

the Coulomb logarithm is no longer valid; 1D calculations

show that constant value lnK ¼ 4 is a better approximation

in this case. With these simplifications, Eq. (37) transforms

to a simple relation between temperature and plasma

density

dn

ndx
¼ 1:5

dT

Tdx
þ A

T2:5
; (59)

where A ¼
ffiffiffiffi
me

8p

p jCei e3lnK
3pe2

0
k2:5 is constant (at given current density),

and Cei ¼ 0:506. Because deviation between electron and

gas temperatures in the near-anode region is rather small

(see Fig. 10), single temperature approximation is used in

Eq. (59) and further in this section.

Equation (59) describes diffusion of electrons in the

media featuring electrical resistivity.

The relation for the ion flux (56) can be reformulated as

Ci 	 �BT1:5 dn

dx
1þ dlnT=dx

dlnn=dx

� �
; (60)

where B ¼
ffiffiffiffiffiffi
p

mAr

q
3k1:5

4riap is constant (at given pressure).

Extracting plasma density derivative from (59) and

substituting it into (60) yields a relation for the ion flux

Ci 	 AB
n

T

1þ b

1� 1:5b
; (61)

where b ¼ dlnT=dx
dlnn=dx represents the ratio of the thermal diffusion

and conventional diffusion of electrons.

Substitution of the ion flux (61) into the continuity equa-

tion rCi ¼ si gives

A2B
ne

T3:5
f ¼ krn

3 � kinan; (62)

where f ¼ ð1� 1:5bÞ�2
1� b2 þ 2:5

1� 1:5b

db=dx

dlnn=dx

� �
:

(63)

Equations (59) and (62) form a system of two differential

equations with two independent variables ne and T. The ana-

lytical solution of these equations can be obtained making

use of an approximation of slow deviation from the ioniza-

tion equilibrium. At the ionization equilibrium, according to

(39), parameter b defined in (61) is about eEion=ð2kTÞ, i.e., is

small (about 0.15); therefore, function f defined in (63) can

be approximated by unity. When gradually departing from

the ionization equilibrium, parameter b is expected to gradu-

ally increase, nevertheless, for some part of the non-

equilibrium layer, approximation of small b and of function

f equal to unity should be sufficiently accurate.

A relation for the degree of deviation from ionization

equilibrium can be obtained from Eq. (61), making use of

the relation (6) for the equilibrium density

n

nSaha

� �2

¼ 1þ c; (64)

where c ¼ A2B k f
kiðTÞpT2:5.

Substitution of a relation (64) for the plasma density

into the definition of b yields a relation for the parameter b
as a function of temperature

b¼ 2
1

2
þ eEion

kT
þ 1

1þ 1=c
dlnf=dx

dlnT=dx
� 2:5� dlnki Tð Þ

dlnT

 ! !�1

:

(65)

When close to the ionization equilibrium, ionization coeffi-

cient ki is high and, according to (58), c� 1. With decrease

of the temperature, the ionization coefficient becomes expo-

nentially low and eventually the parameter c increases to

unity and more. Define this temperature as reference temper-

ature Tref

A2B k f

ki Trefð ÞpT2:5
ref

¼ 1: (66)

At this temperature, ionization and recombination rates are

already very low and ion current does not change; therefore,

reference temperature Tref can be used to determine a bound-

ary between the recombination region and the region of con-

stant ion current. Making use of the Arrhenius expression for

ionization coefficient (5), reference temperature can be

approximated as

Tref ¼
Ti

ln
AipT2:5

ref

A2B k

� � ; (67)

where Ti and Ai are the Arrhenius coefficients (5). Values of

the reference temperature change in a range of about

9000 K–10 000 K for various current densities. For the sake

of simplicity, temperature in the right-hand side of relation

(67) can be put equal to 10 000 K with no significant effect

on the accuracy.

The approximate relation for the parameter b obtained using

the Arrhenius expression for the ionization coefficient reads

b 	 2kT

eEion � kTi= 1þ 1=cð Þ : (68)

The value of the parameter b corresponding to the reference

temperature is given by

bref ¼
4kTref

2eEion � kTi
: (69)

As can be seen from relation (69), parameter b is still rather

low at the edge of the recombination region (it is about

0.25). It justifies the accuracy of the formula obtained taking

function f defined in (63) equal to unity for the whole recom-

bination region. To illustrate this statement, in Figs. 11(a)

and 11(b), the degree of deviation from the ionization equi-

librium and parameter b are plotted as functions of tempera-

ture. Analytical formulae [Eqs. (64) and (68) with f � 1] are

compared to the results of simulations; when plotting the

results of simulations, electron temperature was used for x-
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axis. As can be seen from Fig. 11(b), parameter b is below

0.25 in a temperature range between Tref and Tlocal eq: corre-

sponding to the recombination region. Plasma density pre-

dicted by formula (64) [Fig. 11(a)] is in a very good

agreement with the results of simulations in the recombina-

tion region. Interestingly, even at lower temperatures down

to 8000 K, the agreement is still rather good. Actual plasma

density is higher than equilibrium one (meaning that net

recombination takes place). Note that the results potted in

Fig. 11 were obtained for some arbitrary chosen current den-

sity (5� 106 A/m2); nevertheless, for other current densities

the plots are qualitatively the same.

In Fig. 12, the ion current density given by the analyti-

cal solution [Equation (61) with plasma density and param-

eter b defined by (64) and (68) respectively] is plotted as a

function of temperature and compared to the results of sim-

ulations. Good agreement is observed in the temperature

range of interest corresponding to the whole recombination

region, up to the boundary with the constant ion current

region. As one of conclusions, relation (61) can also be

used to predict the ion current at the constant current region

and the ion current to at the anode surface if plasma param-

eters at the edge of the recombination region (where

T ¼ Tref ) are taken

Ci;a 	 AB
nref

Tref

2eEion � kTi þ 4kTref

2eEion � kTi � 6kTref
; (70)

where nref ¼
ffiffiffi
2
p

nSahaðTref Þ is the plasma density at the edge

of the recombination region.

Ion current density at the anode predicted by the analyti-

cal model (70) is plotted in Fig. 13 as a function of arc cur-

rent density for two different pressures and compared to the

results of the 1D simulations. The ion current to the anode

significantly decreases with the increase of pressure. For

both pressures considered, the analytical and numerical

results are in quite good agreement.

Knowledge of the plasma parameters at both sides of the

recombination region allows us to approximate its thickness

and voltage. Thickness of the recombination region can be

estimated from integration of Eq. (59) over the region

Lrecomb ¼
1

A

ðTlocal eq

Tref

1

b
� 1:5

� �
T1:5dT: (71)

FIG. 11. Deviation from ionization equilibrium as a function of temperature for current density 5� 106 A/m2 and pressure 1 atm: (a) degree of deviation; (b)

ratio of logarithms. Results of the simulations7—blue lines and analytical solution—red line.

FIG. 12. Fraction of the ion current density as a function of temperature for

atmospheric pressure arc; the total current density is 5� 106 A/m2. The

results of simulations7—red line, analytical solution (61)—blue line.

FIG. 13. Ion current density (70) at the anode as a function of the total cur-

rent density.
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Making use of relation (68) for parameter b with a definition

of the reference temperature (66), the integral in (71) can be

approximated

Lrecomb 	
1

2A

eEionT0:5
av

k
� 3T1:5

av

� �
DT þ

T2:5
ref

2

" #
: (72)

Here, Tav ¼ ðTlocal eq þ Tref Þ=2 and DT ¼ Tlocal eq � Tref .

Voltage drop in the recombination region can be deter-

mined using a similar relation as for the local equilibrium

region of the arc column (52) because similar assumptions

were employed for these regions

Vrecomb ¼ 3:2
k

e
Tlocal eq � Trefð Þ: (73)

C. Model of the anode space-charge sheath and heat
transfer in the anode

It is convenient to describe the anode space charge

sheath before describing the constant ion current region

because the near-anode plasma density determined in this

section will be used in the model of constant ion current

region described in Subsection V D.

Temperature of the anode surface can be evaluated using

Eq. (15) at known heat flux to the anode. The latest can be

determined from Eq. (31) of Ref. 7. Because ion current to

the anode is a very small fraction of total current, this equa-

tion can be simplified

qto anode ¼ j Vw þmax Vsh;a;0ð Þð Þ

þ 2:5
k

e
jTe; anode þ jemiss

e Tanode � Te; anodeð Þ
� �

:

(74)

In this equation, major contributions are jVw (work

function is 4.5 V) and 2:5jTe; anode (Te; anode is about 0.5 eV).

Sheath voltage is typically of order of 0.5 V. The last term

in the second brackets is usually small and can be omitted

because either emission current is small or the electron tem-

perature becomes close to the anode temperature. The

sheath voltage is typically small as compared to work func-

tion. Making use of these simplifications, substitution of

(74) into (15) yields a relation for the anode surface

temperature

Tanode ¼ j Vw þ 1:25Vð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
5

4

ra

kare

r !0:4

; (75)

where ka is thermal conductivity of the anode material and

ra is the anode radius. Dependence of the anode temperature

on the current density was plotted in Fig. 10 of Ref. 7.

With known anode temperature, the ion current to the

anode ji;a determined in Subsection V B, and the total cur-

rent density (input parameter of the problem), anode sheath

voltage drop can be determined from the balance of

charged species fluxes at the anode surface and collision-

less sheath boundary conditions given by Eqs. (22)–(27) of

Ref. 7.

In the hot anode case, the sheath voltage drop is

assumed positive: it suppresses the excess of electrons emit-

ted from the anode surface and gives positive contribution to

the total arc voltage (see Fig. 13 in Ref. 7). Note that, in the

case of strong electron emission, electric potential profile in

a near-electrode sheath can become a non-monotonic featur-

ing potential well, resulting in suppression of both electron

fluxes passing through the sheath: emitted electrons and

plasma electrons (see Refs. 32 and 33, for instance). Such

sheath is often referred to as a “double” sheath. However,

such a potential profile was shown33 to be unstable as the

potential well tends to be filled by ions and disappear even in

the case of even very rare collisions in the sheath. These

complex unsteady phenomena are not considered here; for

simplicity, the electric potential in the sheath is assumed

monotonic allowing expressing the total current density at

the surface of the hot anode as

j ¼ 1

4
enanode

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8kTe;anode

p me

s
� jR exp � eVsh;a

k Tanode

� �
� ji;a: (76)

Here, the first term in the right-hand side corresponds to the

flux of plasma electrons towards the anode, nanode is the

plasma density at the anode sheath edge, and the second

term corresponds to the flux of emitted electrons jRðTanodeÞ
defined by (21) partially reflexed by the electric field in the

sheath. Note that the Schottky correction voltage should be

set to zero when calculating emission current jR because of

the electric field direction corresponding to suppression

effect on the emitted electrons.

The ion flux from plasma to the anode surface is also

suppressed by the sheath voltage in this case and can be

expressed as

ji;a ¼
1

4
enanode

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8kTanode

p mAr

r
exp � eVsh;a

k Tanode

� �
; (77)

where nanode is plasma density at the anode sheath edge.

Expressing the Boltzmann exponent from Eq. (77) and

substituting it into Eq. (76) yields the quadratic equation for

nanode with a solution given by

nanode ¼
1

e
jþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þ 4jRji;a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Te;anode mAr

Tanode me

rs0
@

1
A ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pme

2kTe;anode

r
:

(78)

In (78), it was taken into account that the ion current den-

sity at the anode is a small fraction of the total current

density. Substitution of (78) into (77) yields a resulting

expression for the anode sheath voltage drop in the case of

a hot anode

Vsh;a ¼
k Tanode

e

"
1

2
ln

Tanode me

Te;anode mAr

� �

þ ln
j

ji;a
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j

ji;a

� �2

þ 4
jR
ji;a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Te;anode mAr

Tanode me

rs0
@

1
A� ln2

#
:

(79)
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In the case of a cold anode when no electron emission takes

place, the sheath voltage drop is negative to suppress the

electron flux from the plasma (see Fig. 13 in Ref. 7), and bal-

ance of the charged species fluxes at the anode surface can

be written as

j ¼ 1

4
nanode

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8kTe;anode

p me

s
exp

eVsh;a

k Te;anode

� �
� ji;a: (80)

Plasma density at the anode sheath edge nanode can be deter-

mined from Bohm’s criterion for the ion current

ji;a ¼
1

4
nanodee

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k Tanode þ Te;anodeð Þ

mAr

s
: (81)

Substitution of the nanode into Eq. (80) yields an expression

for the anode sheath voltage drop in the case of cold anode

Vsh;a ¼
k Te;anode

e

1

2
ln

Tanode þ Te;anodeð Þme

Te;anodemAr

� �
þ ln

j

ji;a

� �" #
:

(82)

The anode sheath voltage is plotted in Fig. 14 against current

density. In the case of hot anode, the sheath voltage drop is

positive to suppress high electron emission from the anode

surface. The voltage drop increases with current density

reaching about 1 V at a current density of 2� 107 A/m2. This

behavior is in qualitative agreement with anode voltage

measurements34 in a carbon arc with a hot anode. The ana-

lytical solution is in a good agreement with the result of sim-

ulations. In the case of cold anode, the sheath voltage is

decreasing with current density. At higher pressure of 3 atm,

the sheath voltage is slightly higher than at 1 atm in both

cases of cold and hot anode. At atmospheric pressure, the

sheath voltage is negative. Good qualitative agreement is

obtained between the analytical model and simulations. At

pressure of 3 atm, the sheath voltage is about zero (with very

small absolute value) and is not plotted in Fig. 14. In this

case, it was taken equal to zero in the analytical model.

D. Model of the constant ion current region and
integral characteristics of the near-anode layer

In the vicinity of the anode, plasma density decreases

several orders of magnitude, i.e., relative variation of the

density is much higher than one of temperature and, there-

fore, Eqs. (56) and (60) can be reformulated

Ci;a 	 �
3

4

ffiffiffiffiffiffiffiffi
p

mAr

r
kTð Þ1:5

riap

dn

dx
: (83)

Here, Ci;a is the constant ion current in the vicinity of the

anode know from (70). Approximate integration of this rela-

tion gives the thickness of the constant ion current region.

Neglecting the ion number density at the anode sheath edge

and taking into account that plasma density at the boundary

with recombination region is
ffiffiffi
2
p

nSahaðTref Þ yields

Lconst ic 	
ffiffiffiffiffiffiffiffiffiffi

p
2mAr

r 3k1:5 T1:5
ref þ T1:5

e;anode

� �
4riap

nSaha Trefð Þ
Ci;a

; (84)

where Te;anode is electron temperature at the anode sheath

edge, which is about 5500 K according to the results of simu-

lations, independently on arc current density.

Note that because Te;ref is typically about 9000–10 000 K,

i.e., about 1.5 times larger than Te;anode, error in Te;anode should

not significantly affect the accuracy of Lconst ic. Moreover, it

should not influence the accuracy of length estimation of the

whole near-anode layer because the region of constant ion

current is its minor part. Width of the near-anode non-equilib-

rium layer given by

La;layer ¼ Lrecomb þ Lconst ic; (85)

is plotted in Fig. 15 as a function of current density for two

pressure values. As one can see, the layer width significantly

decreases with the increase of current density and slightly

decreases with the increase of pressure. The analytical solu-

tion (solid lines) and results of simulations (markers) are in

good agreement. According to the analytical model and sim-

ulations, the length does not depend on temperature of the

anode, so results for the cold anode are not plotted.

FIG. 14. Voltage drop in the anode sheath as a function of current density. Left—hot (self-cooled) anode; anal. solution is given by Eq. (79); the voltage drop

is positive and increases with current density. Right—cold (1000 K) anode; anal. solution is given by Eq. (82); the voltage drop is negative and decreases with

current density.
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In Fig. 15, the results of heuristic approximation non-

equilibrium layer length are also plotted for comparison. As

in Refs. 8 and 14, the non-equilibrium layer length is esti-

mated by the relaxation length of recombination processes

Lassess
i;a ¼

ffiffiffiffiffiffiffiffi
D tr
p

¼
ffiffiffiffiffiffiffiffiffi

D
~kr ~n2

s
; (86)

where D is the ambipolar diffusion coefficient, tr is charac-

teristic time of recombination, and ~kr and ~n are the charac-

teristic values of the recombination coefficient and plasma

density in the near-anode region. There is some freedom in

determining parameters ~kr and ~ni. In Fig. 15, results obtained

with two different methods for evaluation of these parame-

ters are plotted: (i) the parameters are evaluated at the

edge of the non-equilibrium region ~n ¼ nSahaðTlocal eq:Þ,
~kr ¼ krðTlocal eq:Þ (dashed line); (ii) the parameters are evalu-

ated at the edge on recombination region ~n ¼ nref , ~kr ¼
krðTe;ref Þ (dashed-dotted line). As can be seen from the

figure, using parameters at the edge of the non-equilibrium

region yields much lower values of the layer thickness than

both the simulations and the analytical model (85). With

parameters at the edge of the recombination region, estima-

tion (86) gives closer values but still the analytical model is

in much better agreement with the results of the simulations.

However, with both definitions of ~kr and ~ni, formula (86)

gives correct trend and can be used for rough estimates of

the near-anode region length.

Because the constant ion current region is significantly

thinner than both the recombination region and the local-

equilibrium region of the arc column, effects of thermal con-

ductivity cannot be omitted in Eq. (36), and a similar

approach [relation (52)] for determination of voltage drop in

the region would result in a significant error. A more accu-

rate approach is to use the generalized Ohm’s law (1).

According to the simulations, friction terms are of minor

effect; therefore, they were omitted for the sake of simplic-

ity. With this simplification, approximate integration of Eq.

(1) over the region gives

Vconst ic 	 �
k

e

Tref þ Te;anode

2
ln

nref

nanode
� 1:6

k

e
Tref � Te;anodeð Þ:

(87)

The voltage drop in the near-anode layer defined as

Va;layer ¼ Vrecomb þ Vconst ic þ Vsh;a (88)

is plotted in Fig. 16. Two different cases were considered: a

cooled anode having a fixed temperature of 1000 K and a hot

thermal conductive anode (of cylindrical shape). As one can

see, in the case of cold anode, voltage drop in the layer

decreases (absolute value increases) with the increase of cur-

rent density. Whereas in the case of hot anode, voltage drop

increases only at low current densities but a generally posi-

tive trend is observed. Therefore, in the case of cold anode,

arc constriction in the near-anode layer is energetically

advantageous contrary to the case of hot anode. The trends

are pressure-independent: for higher pressure, voltage in the

near-anode layer is about 1 V higher at different anode cool-

ing mechanisms and all current densities. Rather good agree-

ment between analytical model and simulations is observed

in the case of a hot anode and reasonable agreement in the

case of a cold anode.

FIG. 16. Voltage drop in the near-anode non-equilibrium layer. Left—hot (self-cooled) anode. Right—cold anode (1000 K).

FIG. 15. Thickness of the near-anode non-equilibrium layer.
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VI. VOLT-AMPERE CHARACTERISTIC OF ELECTRIC
ARC AS A WHOLE, VALIDATION AGAINST
EXPERIMENTAL DATA

Arc voltage can be determined as a sum of voltages in

its constituting regions

Varc ¼ Va;layer þ Vcolumn þ Vc;layer: (89)

In Fig. 17, voltages in the whole arc (89), in the arc column

(52), and in the near-cathode region (18) are plotted as a

function of current density, for 2 different pressures. The hot

anode arc is considered with 5 mm gap between the electro-

des of 6 mm diameter. The electrodes were 10 cm long in the

simulations; in the analytical model, infinitely long electro-

des are assumed. As can be seen from the figure, at lower

current densities, arc voltage is primarily contributed by the

cathodic region: voltage in the near-cathode region Vc;layer

and arc voltage Varc are close and show a similar decreasing

trend. The near-cathode voltage is even higher than the total

voltage at current densities below 5� 106 A/m2, meaning

that contribution of negative voltage in the near-anode region

is larger than the contribution of arc column voltage which is

short or even absent at small current densities. At higher cur-

rent densities, cathodic voltage continues to decrease but

total voltage deviates from it and starts to increase. At cur-

rent density of 2� 107 A/m2, the difference between the total

voltage and the cathodic one reaches 6–9 V depending on

pressure. This additional voltage is mostly gained in the arc

column. With the increase of current density, the arc column

becomes longer as near-electrode layers become shorter; the

equilibrium region of the column heats up to have better

electrical conductivity, and it leads to higher energy losses

by radiation included in the model and, as a result, higher

electric field.

The analytical model of the arc was validated against

experimental data.23,24 Atmospheric pressure argon arc with

cylindrical tungsten electrodes 3 mm in diameter was run at

arc currents of 30 A, 50 A, and 100 A. Inter-electrode gap

size was varied from 0.3 mm to 3.5 mm.

In Fig. 18, arc voltage is plotted against current density.

Reasonable qualitative and quantitative agreement between

both models and experimental data is observed. At larger

inter-electrode gaps, arc voltage linearly increases with gap

size. This behavior can be explained by the elongation of

equilibrium region of the arc column. At smaller gaps (below

0.5–2 mm, depending on arc current), near-anode and near-

cathode non-equilibrium regions overlap and the trend is dif-

ferent. The analytical model cannot accurately describe such

a configuration; it just gives constant voltage corresponding

to the arc length at which the near-electrode regions adjoin.

However these constant values are still rather close to the

experimental profiles.

VII. CONCLUSIONS

A self-consistent analytical model of a short atmo-

spheric pressure argon arc comprising of models of near-

electrode regions, arc column, and a model of heat transfer

in cylindrical electrodes was developed. The full equilibrium

region and local-equilibrium region are distinguished in the

arc column: in the full equilibrium region, plasma parame-

ters are uniform; in the local-equilibrium region, plasma is

non-uniform but the thermal and ionization equilibriums are

still maintained. The near-anode region is split into a recom-

bination region and a constant ion current region. The analyt-

ical model developed provides relations for following

characteristics of the arc and its sub-regions.

1. Voltage drop in the near-cathode layer is given by relation

(19) derived from energy balance in the cathode region.

Electron temperature in Eq. (19) can be obtained from Eq.

(29), or, for the sake of simplicity, a constant value of

14 000 K can be utilized resulting in a fairly small error

for a rather wide range of current densities (2� 106 A/m2

to 2� 107 A/m2) and background pressures (1 atm. to 3

atm). The cathode temperature in Eq. (19) can be obtained

from Eq. (22), derived from energy balance at the cathode

surface. If the cathode is not extensively cooled, ion cur-

rent to the cathode can be neglected in Eq. (22) for the

FIG. 18. Arc voltage as a function of the inter-electrode gap size for three

different currents. Experiment23—solid lines, analytical solution (89)—

dashed lines, 1D simulations7—squares.

FIG. 17. Arc voltage as a function of current density for 5 mm arc.
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sake of simplicity. Otherwise, it can be obtained from Eq.

(24).Width of the near-cathode region can be obtained

from Eq. (32) derived from transport of ions in the region.

2. Temperature profile in the arc column can be described

by the differential equation (42). The temperature profile

can be constructed from two asymptotical solutions: (i)

uniform profile in the equilibrium region, Eq. (46), where

the Joule heating is balanced by radiation loss from the

plasma, and (ii) descending profile close to the electrodes,

Eq. (51), where the thermal and ionization (Saha) equilib-

riums are locally valid but plasma parameters vary. The

temperature value at the location where thermal equilib-

rium breaks, Eq. (58), is used as a boundary condition.

In the non-uniform equilibrium region of the arc column,

radiative energy losses from the plasma are small due to

temperature decrease towards an electrode. Thermal con-

ductivity does not play an important role, and, in accor-

dance with the plasma energy balance, Joule heating is

low. In other words, electric field can be neglected and

electron flux is driven only by diffusion, see Eq. (50).

Note that typically a non-uniform equilibrium region is

significant only near the anode, where the electron tem-

perature substantially decreases; near the cathode, local

equilibrium region is thin because temperature values are

rather close in the near-cathode region and uniform part

of the arc column.

3. Knowledge of the temperature profile allows obtaining

the arc column voltage, see Eq. (52).

4. Voltage drop in the near-anode region and its length are

obtained considering the anode region as a composition of

a recombination region, constant ion current region, and a

space-charge sheath. An asymptotic solution for plasma

density deviation from its equilibrium (Saha) value is

obtained for the recombination region, Eq. (64).

Temperature corresponding to the boundary of this region

is determined from Eq. (67); for the region closer to the

anode where the temperature is lower, recombination is

negligible and approximation of a constant ion current is

valid. This solution yields relations for the voltage drop in

the recombination region (73), its length (72), and the ion

current density to the anode (70). The latest in turn yields

voltage of the constant ion current region and its length,

relations (87) and (84), and sheath voltage drop, relations

(79) and (82), in the cases of cold and hot anode, respec-

tively. Plasma density at the anode sheath edge in relation

(87) is given by formula (78).

The analytical model was benchmarked against 1D sim-

ulations and validated against experimental data.23 Good

quantitative agreement with the results of simulations and

qualitative agreement with the experimental data were

obtained.

It was shown that non-equilibrium effects in the near-

electrode plasma play an important role in operation of the

arc. When the anode is not cooled, it operates at high temper-

atures leading to intensive electron emission and resulting in

positive sheath voltage drop.

Effect of pressure variation on the lengths and voltages

of the near-electrode layers and arc as a whole was

investigated. It was shown that pressure variation does not

affect cathodic voltage but affects the anodic one: at a pres-

sure of 3 atm, the voltage is about 1 V higher than in the case

of atmospheric pressure; this difference is independent of

anode cooling mechanisms and current density. Arc voltage

is about 1 V–2 V higher in the case of higher pressure; the

effect is stronger at higher current densities when the arc col-

umn starts to play an important role. The near-electrode

layers become thinner with increase of pressure, especially

ionization layer near the cathode, the length of which is

inversely proportional to pressure, according to (32). The

near-cathode thermal non-equilibrium layer and near-anode

non-equilibrium layers are less sensitive to pressure

variation.

ACKNOWLEDGMENTS

The authors are grateful to Vlad Vekselman (PPPL, NJ),

Yevgeny Raitses (PPPL, NJ), Mikhail Shneider (Princeton

University, NJ), Nelson Almeida (Universidade da Madeira,

Portugal), Mikhail Benilov (Universidade da Madeira), Ken

Hara (Texas A&M University, TX), and Marina Lisnyak

(Universit�e d’Orl�eans, France) for fruitful discussions and

valuable input.

The research is funded by the U.S. Department of

Energy (DOE), Office of Science, Fusion Energy Sciences.

1C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. L. delaChapelle,

S. Lefrant, P. Deniard, R. Lee, and J. E. Fischer, Nature 388, 756

(1997).
2K. Ostrikov and A. B. Murphy, J. Phys. D: Appl. Phys. 40, 2223 (2007).
3X. Q. Fang, A. Shashurin, G. Teel, and M. Keidar, Carbon 107, 273

(2016).
4S. Yatom, J. Bak, A. Khrabryi, and Y. Raitses, Carbon 117, 154 (2017).
5S. Yatom, R. S. Selinsky, B. E. Koel, and Y. Raitses, Carbon 125, 336

(2017).
6Y. W. Yeh, Y. Raitses, B. E. Koel, and N. Yao, Sci. Rep. 7, 3075 (2017).
7A. Khrabry, I. Kaganovich, V. Nemchinsky, and A. Khodak, Phys.

Plasmas 25, 013521 (2018).
8V. A. Nemchinskii and L. N. Peretts, Sov. Phys. Tech. Phys. 22, 1083

(1977).
9J. Jenista, J. V. Heberlein, and E. Pfender, IEEE Trans. Plasma Sci. 25,

883 (1997).
10M. Tanaka, M. Ushio, and C. S. Wu, J. Phys. D: Appl. Phys. 32, 605

(1999).
11N. A. Almeida, M. S. Benilov, U. Hechtfischer, and G. V. Naidis, J. Phys.

D: Appl. Phys. 42, 045210 (2009).
12I. L. Semenov, I. V. Krivtsun, and U. Reisgen, J. Phys. D: Appl. Phys. 49,

105204 (2016).
13J. Heberlein, J. Mentel, and E. Pfender, J. Phys. D: Appl. Phys. 43, 023001

(2010).
14S. M. Shkol’nik, Plasma Sources Sci. Technol. 20, 013001 (2011).
15Gas Discharge Physics, edited by Y. P. Raizer and J. E. Allen (Springer,

Berlin, 1991).
16V. S. Engel’sht, “Thermal plasma and new materials technology,” in

Investigation and Design of Thermal Plasma Generators, edited by O. P.

Solonenko and M. F. Zhukov (Cambridge Interscience Publishing, 1994),

Vol. 1, p. 44.
17W. L. Bade and J. M. Yos, AVCO Report RAD-TR-62-23, 1962.
18B. Y. Moizhes and V. A. Nemchinskii, Sov. Phys. Tech. Phys. 17(5), 793

(1972).
19V. Nemchinsky, J. Phys. D: Appl. Phys. 36, 3007 (2003).
20M. S. Benilov and A. Marotta, J. Phys. D: Appl. Phys. 28, 1869 (1995).
21R. M. S. Almeida, M. S. Benilov, and G. V. Naidis, J. Phys. D: Appl.

Phys. 33, 960 (2000).
22N. A. Almeida, M. S. Benilov, and G. V. Naidis, J. Phys. D: Appl. Phys.

41, 245201 (2008).
23J. F. Lancaster, Br. Weld. J. 1, 412 (1954).

013522-19 Khrabry et al. Phys. Plasmas 25, 013522 (2018)

https://doi.org/10.1038/41972
https://doi.org/10.1088/0022-3727/40/8/S01
https://doi.org/10.1016/j.carbon.2016.05.061
https://doi.org/10.1016/j.carbon.2017.02.055
https://doi.org/10.1016/j.carbon.2017.09.034
https://doi.org/10.1038/s41598-017-03438-w
https://doi.org/10.1063/1.5007082
https://doi.org/10.1063/1.5007082
https://doi.org/10.1109/27.649585
https://doi.org/10.1088/0022-3727/32/5/016
https://doi.org/10.1088/0022-3727/42/4/045210
https://doi.org/10.1088/0022-3727/42/4/045210
https://doi.org/10.1088/0022-3727/49/10/105204
https://doi.org/10.1088/0022-3727/43/2/023001
https://doi.org/10.1088/0963-0252/20/1/013001
https://doi.org/10.1088/0022-3727/36/23/022
https://doi.org/10.1088/0022-3727/28/9/015
https://doi.org/10.1088/0022-3727/33/8/312
https://doi.org/10.1088/0022-3727/33/8/312
https://doi.org/10.1088/0022-3727/41/24/245201


24J. F. Lancaster, The Physics of Welding, 2nd ed. (Pergamon Press, 1984).
25M. S. Benilov and G. V. Naidis, Phys. Rev. E 57, 2230 (1998).
26A. A. Radzig and B. M. Smirnov, Reference Data of Atoms, Molecules

and Ions (Springer-Verlag, Berlin, 1985).
27M. I. Hoffert and H. Lien, Phys. Fluids 10, 1769 (1967).
28J. Annaloro, V. Morel, A. Bultel, and P. Omaly, Phys. Plasmas 19, 073515

(2012).
29J. Ng and Y. Raitses, J. Appl. Phys. 117, 063303 (2015).

30V. I. Kolobov and A. S. Metel, J. Phys. D: Appl. Phys. 48, 233001

(2015).
31L. Spitzer, Physics of Fully Ionized Gases (Wiley, New York, 1962).
32I. Langmuir, Phys. Rev. 33, 954 (1929).
33M. D. Campanell, A. V. Khrabrov, and I. D. Kaganovich, Phys. Plasmas

19, 123513 (2012).
34V. Vekselman, M. Feurer, T. Huang, B. Stratton, and Y. Raitses, Plasma

Sources Sci. Technol. 26, 065019 (2017).

013522-20 Khrabry et al. Phys. Plasmas 25, 013522 (2018)

https://doi.org/10.1103/PhysRevE.57.2230
https://doi.org/10.1063/1.1762356
https://doi.org/10.1063/1.4737147
https://doi.org/10.1063/1.4906784
https://doi.org/10.1088/0022-3727/48/23/233001
https://doi.org/10.1103/PhysRev.33.954
https://doi.org/10.1063/1.4773195
https://doi.org/10.1088/1361-6595/aa7158
https://doi.org/10.1088/1361-6595/aa7158

	s1
	d1
	d2
	s2
	d3
	d4
	d5
	d6
	d7
	d8
	d9
	s2
	d10
	d11
	d12
	d13
	d14
	d15
	s3
	s3A
	f1
	d16
	d17
	d18
	d19
	d20
	d21
	d22
	f2
	s3B
	d23
	d24
	f3
	f4
	s3C
	d25
	d26
	d27
	d28
	d29
	s3D
	d30
	f5
	d31
	d32
	d33
	d34
	d35
	s4
	s4A
	d36
	d37
	f6
	d38
	d39
	d40
	d41
	d42
	d43
	d44
	s4B
	d45
	d46
	d47
	d48
	d49
	d50
	d51
	f7
	d52
	d53
	d54
	d55
	s4C
	d56
	f8
	d57
	d58
	s5
	s5A
	s5B
	f9
	f10
	d59
	d60
	d61
	d62
	d63
	d64
	d65
	d66
	d67
	d68
	d69
	d70
	d71
	f11
	f12
	f13
	d72
	d73
	s5C
	d74
	d75
	d76
	d77
	d78
	d79
	d80
	d81
	d82
	s5D
	d83
	d84
	d85
	f14
	d86
	d87
	d88
	f16
	f15
	s6
	d89
	s7
	f18
	f17
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34

